Biết đồ thị hàm số (P): y = x 2 − ( m 2 + 1)x − 1 cắt trục hoành tại hai điểm phân biệt có hoành độ x 1 ; x 2 . Tìm giá trị của tham số mm để biểu thức T = x 1 + x 2 đạt giá trị nhỏ nhất.
A. m > 0
B. m < 0
C. m = 0
D. Không xác định được
Gọi S là tập hợp tất các giá trị thực của tham số m để đường thẳng d : y = m x cắt parabol P : y = - x 2 + 2 x + 3 tại hai điểm phân biệt A và B sao cho trung điểm I của đoạn thẳng AB thuộc đường thẳng ∆ : y = x - 3 . Tính tổng tất cả các phần tử của S.
A. 2
B. 1
C. 5
D. 3
cho hàm số y=\(\sqrt{2x^2-2x-m}-x-1\)
có đồ thị (C)
tìm tất cả các giá trị nguyên dương của m để đồ thị (C) cắt trục hoành tại 2 điểm phân biệt
Cho parabol (P): y = x 2 − 4x + 3 và đường thẳng d: y = mx + 3. Tìm giá trị thực của tham số m để d cắt (P) tại hai điểm phân biệt A, B có hoành độ x 1 , x 2 thỏa mãn x 1 3 + x 2 3 = 8
A. m = 2
B. m = -2
C. m = 4
D. Không có m
Gọi S là tập hợp các giá trị của tham số m sao cho parabol (P): y = x 2 - 4 x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.
A. T = 3.
B. T = −15.
C. T = 3 2 .
D. T = −9.
Cho hàm số y = 2(m−1)x – m 2 – 3 (d). Tìm tất cả các giá trị của m để (d) cắt trục hoành tại một điểm có hoành độ x 0 thỏa mãn x 0 < 2.
A. m < -1
B. m > 2
C. m > 1
D. m < 1
Cho parabol (P): y = x2 – 2x + m – 1. Tìm tất cả các giá trị thực của tham số m để parabol cắt Ox tại hai điểm phân biệt có hoành độ dương.
A. 1 < m < 2.
B. m < 2.
C. m > 2.
D. m < 1.
đồ thị hàm số \(y=x^2-24x+m^2+2m+84\) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\) thỏa mãn \(x_2=x_1^3-29x_1-24\). Gọi S là tổng các giá trị của m . Tính giá trị của S
đồ thị hàm số \(y=x^2-24x+m^2+2m+84.\) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\) thỏa mãn \(x_2=x_1^3-29x_1-24\). Gọi S là tổng các giá trị của m . Tính giá trị của S