Dựa vào đồ thị hàm số ta xác định được hàm số đạt cực trị tại x=-1 và x=2
Vậy hàm số có 2 điểm cực trị
Dựa vào đồ thị hàm số ta xác định được hàm số đạt cực trị tại x=-1 và x=2
Vậy hàm số có 2 điểm cực trị
Cho hàm số y = f ( x ) xác định, liên tục trên đoạn [−2;2] và có đồ thị là đường cong trong hình vẽ bên. Hàm số y = f ( x ) đạt cực đại tại điểm nào dưới đây?
A. x=-2
B. x=-1
C. x=1
D. x=2
Cho hàm số y = f(x) có đồ thị là đường cong trong hình vẽ bên. Hàm số f(x) đạt cực tiểu tại điểm nào dưới đây?
A. x = 1
B. x = -1
C. x = 2
D. x = 0
Cho hàm số y=f(x) có đồ thị là đường cong trong hình vẽ bên.
Hàm số f(x) đạt cực tiểu tại điểm nào dưới đây?
A. x=1
B. x=-1
C. x=2
D. x=0
Cho hàm số y = f(x) xác định và liên tục trên đoạn [-2;2] và có đồ thị là đường cong trong hình vẽ bên. Hàm số f(x) đạt cực đại tại điểm nào dưới đây?
A. x = - 2
B. x = 0
C. x = 1
D. x = 2
Cho hàm số f(x) có đạo hàm cấp hai f''(x) liên tục trên R và có đồ thị hàm số f(x) như hình vẽ bên. Biết rằng hàm số f(x) đạt cực đại tại điểm x = 1 đường thẳng trong hình vẽ bên là tiếp tuyến của đồ thị hàm số f(x) tại điểm có hoành độ x = 2 . Tích phân ∫ 0 ln 3 e x f " e x + 1 2 d x bằng
A. 8
B. 4
C. 3
D. 6
Cho hàm số f(x) có đạo hàm cấp hai f'''(x) liên tục trên R và đồ thị hàm số f(x) như hình vẽ bên. Biết rằng hàm số f(x) đạt cực đại tại điểm x=1; đường thẳng ∆ trong hình vẽ bên là tiếp tuyến của đồ thị hàm số f(x) tại điểm có hoành độ x=2. Tích phân ∫ 0 ln 3 e x f ' ' ( e x + 1 2 ) d x bằng
A. 8
B. 4
C. 3
D. 6
Cho hàm số y= f(x) . Biết f(x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ.
Hàm số g( x) = f(x- 1) đạt cực đại tại điểm nào dưới đây?
A. x= 2
B. x= 4
C . x= 3
D. x= 1
Cho hàm số f(x), hình vẽ dưới đây là đồ thị của đạo hàm f’(x).
Hàm số g(x)= f(x) - x 3 3 + x 2 - x + 2 đạt cực đại tại điểm nào?
A. x=1
B. x=1
C. x= -1
D. x=2
Cho hàm số y = f(x) xác định, liên tục trên đoạn [-2;3] và có đồ thị là đường cong trong hình vẽ bên. Tìm số điểm cực đại của hàm số y = f(x) trên đoạn [-2; 3]
A. 1
B. 0
C. 2.
D. 3