Đáp án C
Từ đó ta có bảng biến thiên của g(x):
Đáp án C
Từ đó ta có bảng biến thiên của g(x):
Cho hàm số y=f(x) có đạo hàm trên ℝ . Bảng biến thiên của hàm số y=f'(x) như hình dưới
Tìm m để bất phương trình m + x 2 ≤ f ( x ) + 1 3 x 3 nghiệm đúng với mọi x ∈ 0 ; 3
A. m<f(0)
B. m ≤ f ( 0 ) .
C. m ≤ f ( 3 )
D. m< f ( 1 ) - 2 3
Cho hàm số y=f(x) có đạo hàm trên ℝ . Đồ thị của hàm số y=f'(x) như hình dưới
Tìm m để bất phương trình m + x 2 + 4 ≥ 2 f x + 1 - 2 x nghiệm đúng với mọi x ∈ - 4 ; 2
A. m ≥ 2 f ( 0 ) - 1
B. m ≥ 2 f ( - 3 ) - 4
C. m ≥ 2 f ( 3 ) - 16
D. m ≥ 2 f ( 1 ) - 4
Cho hàm số y=f(x) có đạo hàm trên ℝ . Đồ thị hàm số y=f'(x) như hình vẽ bên dưới
Tìm m để bất phương trình m - x ≥ 2 f x + 2 + 4 x + 3 nghiệm đúng với mọi x ∈ - 3 ; + ∞
A. m ≥ 2 f ( 0 ) - 1
B. m ≤ 2 f ( 0 ) - 1
C. m ≤ 2 f ( - 1 )
D. m ≥ 2 f ( - 1 )
Cho hàm số y=f(x) có đạo hàm liên tục trên R, đồ thị hàm số y=f'(x) như hình vẽ bên dưới.
Cho bất phương trình
f
(
2
x
)
-
1
3
2
3
x
+
2
x
+
2
3
+
m
≥
0
; với m là tham số thực. Tìm điều kiện cần và đủ để bất phương trình
f
(
2
x
)
-
1
3
2
3
x
+
2
x
+
2
3
+
m
≥
0
đúng với mọi
x
∈
-
2
;
2
Cho hàm số y=f(x) liên tục trên ℝ và có bảng biến thiên :
Tìm m để phương trình 2f(x) + m =0 có đúng 3 nghiệm phân biệt
A. m = 4
B. m = 2
C. m = -1
D. m = -2
Cho hàm số f(x) có đạo hàm liên tục trên ℝ và thỏa mãn f(x) > 0, ∀ x ∈ ℝ . Biết f(0) = 1 và f ' ( x ) = ( 6 x - 3 x 2 ) f ( x ) . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có nghiệm duy nhất.
Cho hàm số y = f(x) liên tục trên các khoảng - ∞ ; 0 và 0 ; + ∞ có bảng biến thiên như sau
Tìm m để phương trình f(x) = m có 4 nghiệm phân biệt.
A. .
B. .
C. .
D. .
Cho hàm số y=f(x) xác định, liên tục trên ℝ và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x)-1=m có đúng 2 nghiệm.
A. -2<m<-1
B. m>0,m=-1
C. m=-2,m>-1
D. m=-2,m ≥ -1
Cho hàm số y=f(x) xác định, liên tục trên ℝ \ 1 và có bảng biến thiên như hình dưới đây
Tập hợp S tất cả các giá trị của m để phương trình f(x) = m có đúng ba nghiệm thực là :
A. S = {1}
B. S = (-1;1)
C.S = [-1;1]
D. S = {-1;1}