Đáp án A
Phân tích đáp án:
Đáp án A: Đúng.
Đáp án B: Sai vì hàm số đạt cực đại tại x = ± 2 .
Đáp án C: Sai vì hàm số có 1 cực tiểu.
Đáp án D: Sai vì hàm số có giá trị cực tiểu là 1.
Đáp án A
Phân tích đáp án:
Đáp án A: Đúng.
Đáp án B: Sai vì hàm số đạt cực đại tại x = ± 2 .
Đáp án C: Sai vì hàm số có 1 cực tiểu.
Đáp án D: Sai vì hàm số có giá trị cực tiểu là 1.
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
I. Hàm số có 3 điểm cực trị.
II. Hàm số g(x)đạt cực tiểu tại x=0
III. Hàm số g(x) đạt cực đại tại x=2
IV. Hàm số g(x) đồng biến trên khoảng (-2;0)
V. Hàm số g(x) nghịch biến trên khoảng (-1;1)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A.1
B.4
C.3
D.2
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đạt cực tiểu tại điểm nào?
Cho hàm số y=f(x) có bảng biến thiên như sau.
Hàm số y=f(x) đạt cực tiểu tại điểm nào trong các điểm được cho dưới đây?
A. x=2
B. x=-3
C. x=1
D. x=0
Cho hàm số y = f x có bảng biến thiên như hình vẽ bên. Hàm số y = f - x + 3 đạt cực đại tại
Cho hàm số y=f(x) có bảng biến thiên như sau:
Tìm giá trị cực đại y CD và giá trị cực tiểu y CT của hàm số đã cho
A.
B.
C.
D.
chỉ mik cách lập nhóm nha
Trích một số bài toán trong đề:
+ Trên mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa mãn điều kiện /z/ = 2 là:
A. Đường tròn tâm O, bán kính R = 2
B. Đường tròn tâm O, bán kính R = 4
C. Đường tròn tâm O, bán kính R = 1/2
D. Đường tròn tâm O , bán kính R = căn 2
+ Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ. Khẳng định nào sau đây đúng?
A. Hàm số y = f(x) có giá trị cực đại bằng 0
B. Giá trị lớn nhất của hàm số y = f(x) trên tập R là 1
C. Hàm số y = f(x) đạt cực đại tại x = 0 và cực tiểu tại x = -1
D. Hàm số y = f(x) có đúng một cực trị
+ Tìm phần thực của số phức (2 + 3i).i^10
Cho hàm số y=f(x) có bảng biến thiên như hình bên dưới. Giá trị cực tiểu của hàm số là
Xét các khẳng định sau
i) Nếu hàm số y=f(x) có đạo hàm cấp hai trên R và đạt cực tiểu tại x = x 0 thì f ' x 0 = 0 f ' ' x 0 > 0
ii) Nếu hàm số y=f(x) có đạo hàm cấp hai trên R và đạt cực đại tại x = x 0 thì f ' x 0 = 0 f ' ' x 0 < 0
iii) Nếu hàm số y=f(x) có đạo hàm cấp hai trên R và f ' ' x 0 = 0 thì hàm số không đạt cực trị tại x = x 0
Số khẳng định đúng trong các khẳng định trên là
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) có bảng biến thiên như sau
Hàm số đạt cực đại tại điểm
A. x=0
B. x=2
C. x=5
D. x=1
Cho hàm số y=f(x) có bảng biến thiên như hình bên dưới.
Phương trình đường thẳng đi qua hai điểm cực đại và cực tiểu của đồ thị hàm số đã cho là