Câu 3:
Cho hàm số y = x^2 có đồ thị (P) và đường thẳng (d) đi qua điểm M (1;2) có hệ số góc k ≠ 0.
Chứng minh rằng với mọi giá trị k khác 0. đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B.
Cho hàm số y=x^2 có đò thị (P) và đường thẳng (d) đi qua điểm M(1;2)có hệ số k khác 0
a/ Chứng minh rằng với mọi giá trị của k khác 0 đường thẳng (d) cắt (P) tại hai điểm phân biệt A và B
b/ Gọi Xa và Xb là hoành dộ hai diểm A và B. Chứng minh rằng Xa - Xb -Xa.Xb -2 =0
Trong mặt phẳng toạ độ Oxy,cho parabol(P):y=-x2 và đường thẳng (d) đi qua điểm I(0;1) có hệ số góc k
Viết phương trình đường thẳng (d).Chứng minh rằng :Với mọi giá trị của k, đường thẳng (d) luôn cắt parabol(P) tại hai điểm phân biệt A và B
Câu 1: a) Cho hàm số y = ax + b, xác định a,b biết đồ thị hàm số đi qua điểm A( -1;2) và song song với đường thẳng y = 2x+3, vẽ đồ thị hàm số với giá trị a, b vừa tìm được b) Cho hàm số : y = mx – m + 2, có đồ thị là đường thẳng (d) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m c) Tìm m để đường thẳng d cắt đường thẳng y = 2x -3 tại điểm nằm trên trục hoành. Câu 2: Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (C khác A). Tiếp tuyến Bx của đường tròn (O) cắt đường trung trực của BC tại D. Gọi F là giao điểm của DO và BC. a) Chứng minh CD là tiếp tuyến của đường tròn (O) b) Gọi E là giao điểm của AD với đường tròn (O) (với E khác A). Chứng minh DE.DA = DC^2 = DF.DO c) Gọi H là hình chiếu của C trên AB, I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH.
Cho (P) có phương trình y = -x2/4 và I(0;2) . Gọi d là đường thẳng đi qua I có hệ số góc là m
a/ Vẽ m
b/ Chứng minh : với mọi m thì d luôn cắt (P) tại hai điểm phân biệt A,B
c/ Khi A,B di chuyển trên (P) thì trung điểm M của AB di chuyển trên đường nào ?
d/ Với giá trị nào của M thì AB lớn nhất ?
Mk cần câu c,d nên mong mọi người giúp đỡ
2/ Cho parabol (P): y=x2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
1/ Cho đường thẳng (d): y=2x+m+1. Tìm các giá trị của m để đường thẳng (d) cắt trục tung và trục hoành tại A và B sao cho diện tích tam giác OAB bằng 9 (đvdt).
2/ Cho parabol (P): y=x^2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
3/ Cho đường thẳng d: (m+1)x + (m-3)y=1
a/ Chứng minh đường thẳng d luôn đi qua một điểm với mọi m và tìm điểm cố định đó.
b/ Gọi h là khoảng cách từ O đến đường thẳng d. Tìm các giá trị của m để h lớn nhất.
Cho đường tròn ( O ) và một điểm A nằm ngoài đường tròn . Kể tiếp tuyến AB với đường tròn O ( B là tiếp điểm ) và đường kính BC . Trên đoạn thẳng CO lấy I ( I khác C , I khác O ) . Đường thẳng AI cắt ( O ) tại hai điểm D và E ( D nằm giữa A và E ) . Gọi H là trung điểm đọn thẳng DE . Chứng minh :
a) chứng minh : 4 điểm A,B,O,H cùng nằm trên một đường thẳng .
b) chứng minh : AB/AE = BD/BE
c) đường thẳng D đi qua E song song với AO , D cắt BC tại điểm K
d) tia CD cắt AO tại P , tia EO cắt BP tại F . Chứng minh tứ giác BECF là hình chữ nhật