Trong mặt phẳng với hệ tọa độ Oxy Cho parabol p : y = 1/2x bình và đường thẳng d :y =( 2 m + 1) x - 2m bình - 2 m + 4( m là tham số thực )
a/ vẽ đồ thị hàm số P và d trên cùng một tọa độ khi m = 0
b/ tìm các giá trị của m để d cắt P tại 2 điểm phân biệt M (x1;y2) , N (x2;y2) sao cho biểu thức T = 2( y 1 + y2) - 3( x1 + x2 )- x1x2 đạt giá trị nhỏ nhất
cho đường thẳng (d) y=6x-m+3 (m là tham số) và parabol (p) y=x^2 tìm giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1 x2 thỏa mãn (x1-1)(x2^2-5x2+m-4)=2
Bài3 (2 đ): Cho parabol (P): y = -x2 và đường thẳng (d): y = -mx + m – 1 (m là tham số)
a)Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm A và B phân biệt
b) Gọi x1, x2 lần lượt là hoành độ của hai điểm A và B. Tìm các giá trị của m thỏa mãn x12+ x22 = 17
Cho Parabol (P: y=x^2 và (d): y= 3x+ m^2 *-1 (với m là tham số) đường thẳngTìm tất cả các giá trị của tham số m để đường thẳng cắt Parabol tại hai điểm phân biệt A(x1 ,y1) B (x2, y2) sao cho x1,y1 thỏa mãn |x1|+2 |x2| = 3 : .
Tìm tất cả các giá trị của tham số m để đường thẳng d : y=mx -3 cắt parabol P : y = x^2 tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn |x1 - x2| = 2
Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y=x2 và đường thẳng (d): y=mx+5.
CMR:Với mọi giá trị của tham số m, đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2.Tìm m để x12-9-mx2
Trong mặt phẳng tọa độ Oxy, cho (P): y=x2 và đường thẳng (d): y=2x+4m2-8m+3 (m là tham số thực). Tìm các giá trị của m để (P) và (d) cắt nhau tại 2 điểm phân biệt A(x1,y1), B(x2,y2) thỏa mãn điều kiện y1+y2=10
Có bao nhiêu giá trị nguyên của tham số m để đường thẳng d: y = 2mx – 2m + 3 và parabol (P) y = x 2 cắt nhau tại hai điểm phân biệt có tọa độ ( x 1 ; y 1 ) ; ( x 2 ; y 2 ) thỏa mãn y 1 + y 2 < 9
A. 1
B. 3
C. 2
D. 0
Trong mp tọa độ Oxy cho hàm số y=-x2 có đô thị (P)
a vẽ đồ thị (P)
b tìm giá trị của m để đường thẳng (d) y=2x-3m( m tham số) cắt (P) tại 2 điểm có hoành độ x1,x2 TM x1x2 + X2.(3m-2X1) = 6