Cho hàm số y = f(x) liên tục trên đoạn [0;1] thoả mãn ∫ 0 1 x 2 f ( x ) d x = 0 và m a x [ 0 ; 1 ] f ( x ) = 6 Giá trị lớn nhất của tích phân ∫ 0 1 x 3 f ( x ) d x bằng
Cho hàm số y = f(x) liên tục trên R sao cho maxf(x) = f(2) = bằng 84 trên [0; 10] . Xét hàm số g(x) = f(x3+x) - x2 + 2x + m.Tìm m để giá trị lớn nhất của g(x) trên [0; 2]
Cho hàm số y = f (x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(0)=1; ∫ 0 1 ( 1 - x ) 2 f ' ( x ) d x = 1 3 . Giá trị nhỏ nhất của tích phân bằng ∫ 0 1 f 2 ( x ) d x bằng
Cho hàm số y=f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;3] thoả mãn f(0)=3, f(3)=8 và ∫ 0 3 ( f ' ( x ) ) 2 f ( x ) + 1 d x = 4 3 Giá trị của f(2) bằng
A. 64 9
B. 55 9
C. 16 3
D. 19 3
Cho hai hàm số liên tục f(x) và g(x) có nguyên hàm lần lượt là F(x) và G(x) trên [0; 2]. Biết F(0) = 0, F(2) = 1, G(2) = 1 và ∫ 0 2 F ( x ) g ( x ) d x = 3 . Tính tích phân hàm: ∫ 0 2 G ( x ) f ( x ) d x
A. I = 3.
B. I = 0.
C. I = -2.
D. I = -4.
Cho hai hàm số liên tục f và g có nguyên hàm lần lượt là F và G trên đoạn [0;2].. Biết rằng F ( 0 ) = 0 , F ( 2 ) = 1 , G ( 0 ) = - 2 , G ( 2 ) = 1 và ∫ 0 2 F x g x d x = 3 . Tích phân ∫ 0 2 f x G x d x có giá trị bằng
A. 3
B. 0
C. -2
D. - 4
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) f(x) = ( 25 - x 2 ) trên đoạn [-4; 4]
b) f(x) = | x 2 – 3x + 2| trên đoạn [-10; 10]
c) f(x) = 1/sinx trên đoạn [π/3; 5π/6]
d) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]
Cho hai hàm số y=f(x),y=g(x) có đạo hàm là f'(x),g'(x) Đồ thị hàm số f'(x), g'(x) được cho như hinh vẽ dưới đây
Biết rằng f(0)-f(6)<g(0)-g(6) Giá trị lớn nhất, giá trị nhỏ nhất của hàm số h(x)=f(x)-g(x) trên đoạn [0;6] lần lượt là:
A. h(6),h(2)
B. h(0),h(2)
C. h(2),h(6)
D. h(2),h(0)
Cho hàm số y = f(x) có đạo hàm f'(x). Hàm số y = f'(x) liên tục trên tập số thực và có bảng biến thiên như sau:
Biết rằng f(-1) = 10 3 , f(2) = 6. Giá trị nhỏ nhất của hàm số g(x) = f 3 ( x ) - 3 f ( x ) trên đoạn [-1;2] bằng
A. 10 3
B. 820 27
C. 730 27
D. 198