Cho hàm số f(x) xác định trên R thỏa mãn f ' ( x ) = e x + e - x - 2 , f(0)=5 và f ln 1 4 = 0 . Giá trị của biểu thức S = f ( - ln 16 ) + f ( ln 4 ) bằng
Cho hàm số y = f(x) xác định trên R\{1/2} thỏa mãn f ' ( x ) = 2 2 x - 1 ; f(0)=1 Giá trị của biểu thức f(-1)+f(3) bằng:
A. 4+ln15
B. 2+ln15
C. 3+ln15
D. ln15
Cho hàm số f(x) có đạo hàm là f'(x). Đồ thị của hàm số y = f'(x) được cho như hình vẽ dưới đây:
Biết rằng f(-1) + f(0) < f(1) + f(2). Giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn [-1;2] lần lượt là:
A. f(1);f(2)
B. f(2);f(0)
C. f(0);f(2)
D. f(1);f(-1)
Cho hàm số f(x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) và f ' ( x ) = 1 x 2 + x ; f ( 1 ) = ln 1 2 Biết ∫ 1 2 x 2 + 1 f ( x ) d x = a ln 3 + b ln 2 + c với a,b,c là các số hữu tỉ. Giá trị biểu thức a+b+c bằng
A. 27/2
B. 1/6
C. 7/6
D. -3/2
Cho hàm số f(x) xác định trên ℝ \ 1 2 thỏa mãn f ' ( x ) = 2 2 x - 1 ; f ( 0 ) v à f ( 1 ) = 2 Giá trị của biểu thức f ( - 1 ) + f ( 3 ) bằng:
A. 4+ln15
B. 2+ln15
C. 3+ln15
D. ln15
Cho hàm số f(x) xác định trên R \ { 1 2 } thỏa mãn f ' ( x ) = 2 2 x - 1 f (0) = 1 và f(1) = 2. Giá trị của biểu thức f(-1)+f(3) bằng
A. 4 + l n 15
B. 2 + ln 15
C. 3+ ln 15
D. ln 15
Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên đoạn [0;1] thoả mãn ∫ 0 1 e x f ( x ) d x = ∫ 0 1 e x f ' ( x ) d x = ∫ 0 1 e x f ' ' ( x ) d x ≠ 0 . Giá trị của biểu thức e f ' ( 1 ) - f ' ( 0 ) e f ( 1 ) - f ( 0 ) bằng
A. -2.
B. -1.
C. 2.
D. 1.
Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x). Đồ thị hàm số y = f'(x) được cho bởi hình bên dưới. Biết rằng f(0) + f(1) - 2f(2) = f(4). - f(3). Giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [0;4] là
A. f(1)
B. f(0)
C. f(2)
D. f(4)
Cho hàm số f(x) có đạo hàm là hàm f'(x). Đồ thị hàm số f'(x) như hình vẽ bên. Biết rằng f(0) + f(1) - 2f(2) = f(4) - f(3). Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của f(x) trên đoạn [0;4].
A. m = f(4), M = f(2)
B. m = f(1), M = f(2)
C. m = f(4), M = f(1)
D. m = f(0), M = f(2)