Cho hàm số y = f(x) liên tục trên khoảng 0 ; + ∞ . Biết f(1) = 1 và f(x) = xf'(x) + ln (x). Giá trị f(e) bằng
A. e
B. 1
C. 2
D. 1 e
Cho hai hàm số liên tục f(x) và g(x) có nguyên hàm lần lượt là F(x) và G(x) trên [0; 2]. Biết F(0) = 0, F(2) = 1, G(2) = 1 và ∫ 0 2 F ( x ) g ( x ) d x = 3 . Tính tích phân hàm: ∫ 0 2 G ( x ) f ( x ) d x
A. I = 3.
B. I = 0.
C. I = -2.
D. I = -4.
Cho hàm số f(x) liên tục trên ℝ và F(x) là nguyên hàm của f(x), biết ∫ 0 9 f ( x ) d x = 9 , F(0)=3. Tính F(9).
A. -6.
B. 6.
C. 12.
D. -12.
Cho hàm số y= f(x) có đạo hàm liên tục trên khoảng thỏa mãn x 2 f ' x + f x = 0 và f x ≠ 0 , ∀ x ∈ 0 ; + ∞ . Tính f(2) biết f(1) = e.
A. .
B. .
C. .
D. .
Cho hàm số y = f(x) có đạo hàm liên tục trên [1;2] thỏa mãn ∫ 1 2 f ' ( x ) d x = 10 và ∫ 1 2 f ' ( x ) f ( x ) d x = ln 2 . Biết rằng f(x)>0. Tính f(2)
A. f(2) = 10
B. f(2) = -20
C. f(2) = -10
D. f(2) = 20
Cho hàm số y = f(x) xác định và liên tục trên R \ 0 biết x . f x ≠ - 1 ∀ x ≠ 0 f(1) = -2 và với ∀ x ∈ R \ 0 Tính ∫ 1 e f x d x
A. .
B. .
C. .
D. .
Cho hàm số f(x) có đạo hàm và liên tục trên đoạn [4;8] và f ( x ) ≠ 0 ∀ x ∈ [ 4 ; 8 ] Biết rằng
∫ 4 8 [ f ' ( x ) ] 2 f ( x ) 4 d x = 1 và f(4) = 1/4; f(8) = 1/2; tính F(6)
Cho hàm số f(x) liên tục trên khoảng (-2; 3). Gọi F(x) là một nguyên hàm của f(x) trên khoảng (-2; 3). Tính , biết F(-1) = 1, F(2) = 4.
A. I = 6.
B. I = 10.
C. I = 3.
D. I = 9.
Cho hàm số y = f ( x ) có đạo hàm liên tục trên đoạn [0;1] và f(0)+f(1) = 0. Biết ∫ 0 1 f 2 ( x ) d x = 1 2 ∫ 0 1 f ' ( x ) cosπ d x = π 2 Tính ∫ 0 1 f ( x ) d x