Vì y’ = 12 x 2 + m nên m ≥ 0; y” = –6( m 2 + 5m)x + 12m
+) Với m ≥ 0 ta có y’ > 0 (khi m = 0; y’ = 0 tại x = 0).
Vậy hàm số (1) luôn luôn đồng biến khi m ≥ 0; y” = –6( m 2 + 5m)x + 12m
+) Với m < 0 thì y = 0 ⇔ 
Từ đó suy ra:
y’ > 0 với

y’ < 0 với

Vậy hàm số (1) đồng biến trên các khoảng

và nghịch biến trên khoảng



