Ta có hàm số: P(x) = x3 + ax + b
a, P(0)=0
<=> b=0
P(1)=3 <=> a+b+1=3
=>a=2-0=2
Vì P(0)\(⋮\) 3 => \(b⋮3\)=> b=3 (vì b nguyên tố)
P(1)\(⋮\)3=> a+b+1\(⋮\)3
=> a+1\(⋮\)3
=> a= 3k-1(k là số tự nhiên)
lúc đó \(P\left(x\right)=x^3+x\left(3k-1\right)+3\)
\(=x^3-x+3kx+3=x\left(x-1\right)\left(x+1\right)+3kx+3\)
Vì x,x-1,x+1 là 3 số tự nhiên liên tiếp nên tích chia hết cho 3
=> P(x)\(⋮\)3