Cho hàm số y = f ( x ) liên tục trên R và có đồ thị như hình vẽ. Biết rằng diện tích các hình phẳng (A), (B) lần lượt bằng 15 và 3. Tích phân ∫ 1 e 1 1 x . f ( 3 ln x + 2 ) d x bằng
Cho hàm số f(x) liên tục trên R và có đồ thị như hình vẽ bên. Biết rằng diện tích các hình phẳng (A), (B) lần lượt bằng 3 và 7. Tích phân ∫ 0 π 2 cos x , f ( 5 sin x - 1 ) d x bằng
A. - 4 5
B. 2
C. 4 5
D. -2
Cho hàm số liên tục trên và có đồ thị như hình vẽ bên.
Biết rằng diện tích hình phẳng , lần lượt bằng 3 và 7. Tích phân bằng
A. .
B. 2.
C..
D.-2.
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của A cắt (C) tại 2 điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ).Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x = 0; x=2 có diện tích bằng
A. 2/5
B. 1/9
C. 2/9
D. 1/5
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x = 0 có diện tích bằng:
A. 2/5
B. 1/9
C. 2/9
D. 1/5
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên R và có đồ thị của hàm số f'(x) như hình vẽ, Biết ∫ 0 3 x + 1 f ' x d x = a và ∫ 0 1 f ' x d x = b , ∫ 1 3 | f ' x | d x = c , f 1 = d . Tích phân ∫ 0 3 f x d x bằng
A. .
B. .
C. .
D.
Cho hàm số y = f ( x ) liên tục trên đoạn [a;b], có đồ thị tạo với trục hoành một hình phẳng gồm ba phần có diện tích S1,S2,S3 như hình vẽ.
Tích phân ∫ a b f ( x ) d x bằng
Cho hàm số y=f(x) liên tục trên đoạn [a;b]. Gọi D là hình phẳng giới hạn bởi đồ thị (C): y=f(x), trục hoành và hai đường thẳng x=a, y=b (như hình vẽ dưới đây). Giả sử S D là diện tích của hình phẳng D. Chọn công thức đúng trong các phương án dưới đây
A. S D = − ∫ a 0 f x d x + ∫ 0 b f x d x .
B. S D = ∫ a 0 f x d x − ∫ 0 b f x d x .
C. S D = ∫ a 0 f x d x + ∫ 0 b f x d x .
D. S D = − ∫ a 0 f x d x − ∫ 0 b f x d x .
Cho hàm số y=f(x) liên tục trên đoạn [a;b]. Gọi D là hình phẳng giới hạn bởi đồ thị (C): y=f(x), trục hoành và hai đường thẳng x=a, y=b (như hình vẽ dưới đây). Giả sử S D là diện tích của hình phẳng D. Chọn công thức đúng trong các phương án dưới đây
A. S D = − ∫ a 0 f x d x + ∫ 0 b f x d x .
B. S D = ∫ a 0 f x d x − ∫ 0 b f x d x .
C. S D = ∫ a 0 f x d x + ∫ 0 b f x d x .
D. S D = − ∫ a 0 f x d x − ∫ 0 b f x d x .