Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Bá Huy h

cho hàm số f(x)=\(\frac{2x+1}{x^2\left(x+1\right)^2}\).Tìm x,y thuộc N sao cho 

S=f(1)+f(2)+...+f(x)=\(\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}\)-19+x

Nguyễn Linh Chi
16 tháng 4 2019 lúc 11:35

Ta có: 

f(x)=\(\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

 \(\Rightarrow f\left(1\right)=1-\frac{1}{2^2};f\left(2\right)=\frac{1}{2^2}-\frac{1}{3^2};...;f\left(x\right)=\frac{1}{x^2}-\frac{1}{\left(x-1\right)^2}\)

=> \(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}=1-\frac{1}{\left(x+1\right)^2}\)

Theo bài ra ta có :

\(1-\frac{1}{\left(x+1\right)^2}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)

<=> \(1-\frac{1}{\left(x+1\right)^2}=2y\left(x+1\right)-\frac{1}{\left(x+1\right)^2}-19+x\)

<=> 1=2y(x+1)-19+x

<=> (2y+1)(x+1)=21

x, y thuộc N => 2y+1, x+1 thuộc N

Ta có bảng

x+131721
2y+172131
x20620
y31010

Vậy....

Nguyễn Minh Hoàng
17 tháng 4 2019 lúc 20:00

Cô Linh Chi:

phần bảng x không có giá trị bằng 0

Nếu x = 0 thì hàm số f (x) có giá trị bằng 0

Nguyễn Linh Chi
17 tháng 4 2019 lúc 20:11

Thứ nhất: Không phải phần bảng không có giá trị bằng 0. Mà là kết luận thì phải loại trường hợp x=0. :)

Thứ 2: Nếu x=0 thì hàm số f(x) không xác định chứ ko phải bằng 0 em nhé :)


Các câu hỏi tương tự
๖²⁴ʱƘ-ƔℌŤ༉
Xem chi tiết
Nguyen Thi Bich Huong
Xem chi tiết
Phan Quốc Việt
Xem chi tiết
luong long
Xem chi tiết
Xem chi tiết
๖ۣۜBá ๖ۣۜVươηɠ
Xem chi tiết
Cù Thúy Hiền
Xem chi tiết
Trần Hoàng Yến
Xem chi tiết
Trần Hoàng Yến
Xem chi tiết