Ta có:
\(f\left(a\right)+f\left(b\right)=f\left(a\right)+f\left(1-a\right)\\ =\dfrac{100^a}{100^a+10}+\dfrac{100^{1-a}}{100^{1-a}+10}\\ =\dfrac{100^a}{100^a+10}+\dfrac{\dfrac{100}{100^a}}{\dfrac{100}{100^a}+10}\\ =\dfrac{100^a}{100^a+10}+\dfrac{100}{100^a}.\dfrac{100^a}{100+10.100^a}\\ =\dfrac{100^a}{100^a+10}+\dfrac{10}{10+100^a}\\ =\dfrac{100^a+10}{10+100^a}=1\left(đpcm\right)\)
f(a)+f(b)=f(a)+f(1−a)=100a+10100a+1001−a+101001−a=100a+10100a+100a100+10100a100=100a+10100a+100a100.100+10.100a100a=100a+10100a+10+100a10=10+100a100a+10=1(đpcm)
Ta có:
f(a)+f(b)=\(\dfrac{100a}{100a+10}\)+\(\dfrac{100}{100b+10}\)=\(\dfrac{\text{100 a (100 b +10)+100 b (100 a +10) }}{\left(100a+10\right)\left(100b+10\right)}\)
=\(\dfrac{\text{200+10(100 a +100 b )}}{\text{200+10(100 a +100 b )}}\)=1
=>f(a)+f(b)=1
b=1-a
f(a) + f(1)= 100a/100a+10 +1001-a/1001-a+10
=100a/100a+10 + (100/100a)/(100/100a +10)
= 100a/100a+10 + 100/100a. 1/(100+100a.10)/100a
=100a/100a+10 + 100/100a.100a/100+100a.10
=100a/100a+10 + 10/10+100a
=100a+10/100a+10
=1(đpcm)
x=a
\(\Rightarrow\) f(a)=\(\dfrac{100^a}{100^a+10}\)
x=b
\(\Rightarrow\) f(b)=\(\dfrac{100^b}{100^b+10}\)
f(a)+f(b)=\(\dfrac{100^a}{100^a+10}\)+\(\dfrac{100^b}{100^b+10}\)
=\(\dfrac{100^a.\left(100^b+10\right)+100^b.\left(100^a+10\right)}{\left(100^a+10\right).\left(100^b+10\right)}\)
=\(\dfrac{100^a.100^b+10.100^a+100^b.100^a+10.100^b}{100^a+10.100^b+10}\)
=\(\dfrac{100^{a+b}+10.100^a+100^{b+a}+10.100^b}{100^{a+b}+10.100^a+10.100^b+100}\)
= \(\dfrac{2.100^{a+b}+10.\left(100^a+100^b\right)}{100^{a+b}+10.\left(100^a+100^b\right)+100}\)
nếu a+b=1 thì f(a)+f(b)=\(\dfrac{200+10.\left(100^a+100^b\right)}{200+10.\left(100^a+100^b\right)}\)=1