Cho hàm số f(x)=x^2-4x+3. Có bao nhieu giá trị nguyên của tham số m để phương trình f^2(/x/)-(m-6)f(/x/)-m+5=0 có 6 nghiệm phân biệt
Cho hàm số y=f(x) liên tục trên tập Rvà có đồ thị (C) như hình vẽ. Có bao nhiêu giá trị nguyên dương của tham số m để phương trình
f
2
(
x
)
-
(
m
-
1
)
f
(
x
)
+
m
-
2
có 12 nghiệm phân biệt?
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d ( v ớ i a , b , c , d ∈ ℝ , a > 0 ) . Biết đồ thị hàm số y=f(x) này có điểm cực đại A (0;1) và điểm cực tiểu B(2;-3). Hỏi tập nghiệm của phương trình f 3 ( x ) + f ( x ) - 2 f ( x ) 3 = 0 có bao nhiêu phần tử?
A. 2019
B. 2018
C. 9
D. 8
Cho hàm số y=f(x) có đạo hàm xác định trên tập r/{0} và đồ thị hàm số y=f(x) như hình vẽ bên dưới.
Có bao nhiêu giá trị nguyên của tham số m để phương trình
f
(
cos
2
x
)
=
m
có nghiệm?
Cho hàm số f ( x ) = - 4 x 4 + 8 x 2 - 1 . Có bao nhiêu giá trị nguyên dương của m để phương trình f(x)=m có đúng 2 nghiệm phân biệt
A. 3
B. 0
C. 2
D. 1
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c , d ∈ R có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên thuộc đoạn - 10 ; 10 của tham số m để bất phương trình f 1 - x 2 + 2 3 x 3 - x 2 + 8 3 - f m ≤ 0 có nghiệm. Số phần tử của tập hợp S bằng
A. 9
B. 10
C. 12
D. 11
Cho F(x) là một nguyên hàm của hàm số 1 e x + 1 , thỏa mãn F(0) = –ln2. Tìm tập nghiệm S của phương trình F(x) + ln(ex + 1) = 3.
A. S = 3
B. S = - 3
C. S = ∅
D. S = ± 3
Cho hàm số y = f ( x ) = ln ( 1 + x 2 + x ) .
Tập nghiệm của bất phương trình
f ( a - 1 ) + f ( ln a ) ≤ 0 là:
Cho hàm số y = ax 3 + bx 2 + cx + d với a ≠ 0 có hai hoành độ cực trị là x=1 và x=3. Tập hợp tất cả các giá trị của tham số m để phương trình f(x) = f(m) có đúng ba nghiệm phân biệt là:
A. .
B. .
C. .
D. .
Cho hàm số y = a x 3 + b x 2 + c x + d với a khác 0 có hai hoành độ cực trị là x=1 và x=3. Tập hợp tất cả các giá trị của tham số m để phương trình f(x) = f(m) có đúng ba nghiệm phân biệt là: