Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hai tia Ax, By chéo nhau. Lấy M, N lần lượt là các điểm di động trên Ax, By. Gọi (α) là mặt phẳng chứa By và song song với Ax. Đường thẳng qua M và song song với AB cắt (α) tại M’.

a) Tìm tập hợp điểm M’.

b) Gọi I là trung điểm của MN. Tìm tập hợp các điểm I khi AM = BN

Cao Minh Tâm
8 tháng 7 2017 lúc 1:59

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi (β) là mặt phẳng xác định bởi hai đường thẳng AB và Ax

Do Ax // (α) nên (β) sẽ cắt (α) theo giao tuyến Bx’ song song với Ax.

Ta có M’ là điểm chung của (α) và (β) nên M’ thuộc Bx’.

Khi M trùng A thì M’ trùng B nên tập hợp M’ là tia Bx’.

Ta có tứ giác ABM’M là hình bình hành nên BM’ = AM = BN.

Tam giác BM’N cân tại B.

Suy ra trung điểm I của cạnh đáy NM’ thuộc phân giác trong Bt của góc B trong tam giác cân BNM’. Dễ thấy rằng Bt cố định.

Gọi O là trung điểm của AB. Trong mặt phẳng (AB, Bt), tứ giác OBIJ là hình bình hành nên  I J   → =   B O → . Do đó I là ảnh của J trong phép tịnh tiến theo vectơ  B O → . Vậy tập hợp I là tia Ot’ song song với Bt.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết