Bài 6. Trường hợp đồng dạng thứ nhất của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho hai tam giác ABC và MNP có \(AB = 2,BC = 5,CA = 6,MN = 4,NP = 10,PM = 12\).

Hãy viết các cặp góc tương ứng bằng nhau của hai tam giác trên và giải thích kết quả.

Ta thấy:

\(\begin{array}{l}\frac{{AB}}{{MN}} = \frac{2}{4} = \frac{1}{2}\\\frac{{BC}}{{NP}} = \frac{5}{{10}} = \frac{1}{2}\\\frac{{CA}}{{PM}} = \frac{6}{{12}} = \frac{1}{2}\\ \Rightarrow \frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}}\end{array}\)

Xét tam giác ABC và tam giác MNP có: \(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}}\)

\( \Rightarrow \Delta ABC \backsim\Delta MNP\) (c-c-c)

\( \Rightarrow \widehat {ABC} = \widehat {MNP},\,\,\widehat {ACB} = \widehat {MPN},\,\,\widehat {BAC} = \widehat {NMP}\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết