Bài 6. Trường hợp đồng dạng thứ nhất của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Bạn Hoa vẽ trên giấy một tam giác ABC và đoạn thẳng MN với các kích thước như Hình 66. Bạn Hoa đố bạn Thanh vẽ điểm P thỏa mãn \(\widehat {PMN} = \widehat {ACB},\,\,\widehat {PNM} = \widehat {BAC}\) mà không sử dụng thước đo góc. Em hãy giúp bạn Thanh sử dụng thước thẳng (có chia khoảng milimét) và compa để vẽ điểm P và giải thích kết quả tìm được.

Vì tổng ba góc trong một tam giác bằng \(180^\circ \) nên nếu \(\widehat {PMN} = \widehat {ACB},\,\,\widehat {PNM} = \widehat {BAC}\) thì \(\widehat {MPN} = \widehat {CBA}\)

Ta cần \(\Delta ABC \backsim\Delta NPM\)

Khi đó \(\frac{{AB}}{{NP}} = \frac{{BC}}{{PM}} = \frac{{AC}}{{NM}}\) hay \(\frac{8}{{NP}} = \frac{6}{{PM}} = \frac{3}{{4,5}} = \frac{2}{3}\)

Ta có: \(\frac{8}{{NP}} = \frac{2}{3} \Rightarrow NP = 8.3:2 = 12cm\)

\(\frac{6}{{MP}} = \frac{2}{3} \Rightarrow MP = 6.3:2 = 9cm\)

Vậy Thanh cần dùng thước kẻ vẽ hai đoạn thẳng NP=12cm và PM=9cm để tìm được điểm P thỏa mãn yêu cầu đề bài.


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết