cho hai số tự nhiên m và n thỏa mãn \(\frac{m+1}{n}+\frac{n+1}{m}\)
Chứng minh rằng \(\left(m,n\right)\le\sqrt{m+n}\)
GIẢI GIÚP MÌNH , MÌNH TICK CHO
Cho m ,n là 2 số tự nhiên thỏa mãn 4m2 +m = 5n2 +n. Chứng minh rằng m-n và 5m+5n +1 là số chính phương
cho m;n\(\in N\)thỏa mãn \(\sqrt{6}-\frac{m}{n}>0\).chứng minh rằng \(\sqrt{6}-\frac{m}{n}>\frac{1}{2mn}\)
1) Tìm các số tự nhiên n để số 3^n+19 là số chính phương
2) Cho m,n là 2 số nguyên dương thỏa mãn m+n-1 là 1 số nguyên tố và m+n-1 là 1 ước của 2(m^2+n^2)-1 CMR m=n
Chứng minh rằng nếu m,n là các số tự nhiên thỏa mãn: \(4m^2\)+ m = \(5n^2\) + n thì:
m - n và 5m + 5n + 1 là số chính phương.
1 nếu m, n là các số tự nhiên thỏa mãn 2m^2+m=3n^2+n thì m- n là số nguyên tố
2 chứng minh với n thuộc Z chẵn và n >4 thì n^4-4n^3-16n^2+16 chia hết cho 383
3 cho a, b là số chính phương lẻ. chứng minh (a-1((b-1) chia hết cho 192
4 tìm nghiệm nguyên tố của phương trình x^2- 2y= 1
Cho các số tự nhiên m, n thỏa mãn 2m2 + m = 3n2 + n. Chứng minh 3(m+n) + 1 là số chính phương.
Cho các số tự nhiên m, n thỏa mãn 2m2 + m = 3n2 + n. Chứng minh 3(m+n) + 1 là số chính phương.
Chứng minh rằng nếu m, n là số tự nhiên thỏa mãn: \(4m^2+m=5n^2+n\) thì \(m-n\)và \(5m+5n+1\)đều là số chính phương