cho hai số tự nhiên n và m thỏa mãn \(\frac{m+1}{n}+\frac{n+1}{m}\)tổng này là số nguyên .
Chứng minh rằng : (m,n)\(\le\sqrt{m+n}\)
1.Cho \(n\inℕ^∗\)và a,b dương , chứng minh:
\(\frac{1}{a^n}+\frac{1}{b^n}\ge\frac{2^{n+1}}{\left(a+b\right)^n}\)
2.Cho m,n dương , chứng minh:
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
3.Cho m,n,p là các số dương, chứng minh:
\(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\ge\frac{\left(a+b+c\right)^2}{m+n+p}\)
Giúp mình với mn ơi!!
cho m;n\(\in N\)thỏa mãn \(\sqrt{6}-\frac{m}{n}>0\).chứng minh rằng \(\sqrt{6}-\frac{m}{n}>\frac{1}{2mn}\)
Cho m ,n là 2 số tự nhiên thỏa mãn 4m2 +m = 5n2 +n. Chứng minh rằng m-n và 5m+5n +1 là số chính phương
giúp mình với
Cho m, n là các số nguyên thỏa mãn m^2 + n^2 chia hết cho 5. Chứng minh tồn tại ít nhất một trong hai số 2m+n hoặc m+2n chia hết cho 5. nhanh có tick
Cho \(x>0,y>0\)và m,n là hai số thực. Chứng minh rằng \(\frac{m^2}{x}+\frac{n^2}{y}\ge\frac{\left(m+n\right)^2}{x+y}\)
Cho m,n là các số tự nhiên, m lẻ:
Chứng minh rằng \(\left(2^m-1,2^n+1\right)=1\)
Bài 1:
a) Tìm các số tự nhiên n thỏa mãn bất phương trình:
(n + 2)2 - (x - 3) (n + 3) \(\le\)40
b) Tìm các số tự nhiên n thỏa mãn đồng thời cả hai bất phương trình sau:
4 (n + 1) + 3n - 6 < 19 và (n - 3)2 - (n + 4) (n - 4) \(\le43\)
Bài 2:
Chứng minh bất đẳng thức sau
\(A=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) \(B=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6;\left(a,b,c>0\right)\)
Cho các số tự nhiên m, n thỏa mãn 2m2 + m = 3n2 + n. Chứng minh 3(m+n) + 1 là số chính phương.