Với hai số thực không âm a,b thỏa mãn a^2+b^2=4. Tìm giá trị lớn nhất của biểu thức M= ab/(a+b+2)
Cho các số thực không âm a ; b ; c thỏa mãn a + b + c = 3 . Tìm giá trị nhỏ nhất của biểu thức \(A=a^2+b^2+c^2-2ab-6bc-4ca\)
Cho hai số thực không âm a, b thỏa mãn \(a^2+b^2=2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:
\(M=\dfrac{a^3+b^3+4}{ab+1}\)
cho a,b là số thực không âm thỏa mãn: \(a^2+b^2=8\)
tìm giá trị lớn nhất và nhỏ nhất của P=\(\frac{a^2+b^2+11}{2ab+1}\)
cho các số thực không âm a,b,c thỏa mãn a2+b2+c2=1
tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=\(\sqrt{\frac{a+b}{2}}+\sqrt{\frac{b+c}{2}}+\sqrt{\frac{c+a}{2}}\)
1 . )
Cho 3 số a,b,c dương. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\)
2
cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
Cho biểu thức K = ab + 4ac – 4bc, với a, b, c là các số thực không âm thỏa mãn: a + b + 2c = 1
1, Chứng minh K lớn hơn hoặc bằng – 1/2
2, Tìm giá trị lớn nhất của biểu thức K
Cho các số thực không âm $a, b, c$ thỏa mãn: $a+b+c=2021$. Tìm giá trị lớn nhất và giả trị nhỏ nhất của biểu thức: $P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}$.
với hai số thực không âm a,b thỏa mãn \(a^2+b^2=4\) , tìm giá trị lớn nhất của biểu thức
\(M=\frac{ab}{a+b+2}\)