Cho số phức z thỏa mãn: |z - 1 + i| = 2. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức z là:
A. Một đường thẳng.
B. Một đường Parabol.
C. Một đường tròn có bán kính bằng 2.
D. Một đường tròn có bán kính bằng 4.
Cho số phức z = ( 2 - 3 i ) ( 4 - i ) 3 + 2 i . Tìm tọa độ điểm biểu diễn của số phức z trên mặt phẳng Oxy
A. .
B. .
C. .
D. .
Cho số phức z thỏa mãn |z|=2. Biết rằng tập hợp các điểm biểu diễn số phức w=3-2i+(2-i)z là một đường tròn. Tìm tọa độ tâm I của đường tròn đó?
A.I(3;-2)
B. I(-3;2)
C.I(3;2)
D.I(-3;-2)
Cho số phức z thỏa mãn (2-i)z = (2+i)(1-3i). Gọi M là điểm biểu diễn của z. Khi đó tọa độ điểm M là.
A. M(3;1)
B. M(3;-1)
C. M(1;3)
D. M(1;-3)
Trên mặt phẳng tọa độ, các điểm A, B, C theo thứ tự biểu diễn các số phức 2+3i, 3+i, 1+2i.Trọng tâm G của tam giác ABC biểu diễn số phức z. Tìm z
A. z=1+i
B.z=2+2i
C.z=2-2i
D.z=1-i
Cho số phức z thỏa mãn: z ( 1 + 2 i ) - z ¯ ( 2 - 3 i ) = - 4 + 12 i . Tìm tọa độ điểm M biểu diễn số phức z.
Cho số phức z thỏa mãn z + i = 1 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 + 4 i z + 2 + i là một đường tròn tâm I, điểm I có tọa độ là
A. (6; -2)
B. (6; 2)
C. (2; 1)
D. (-2; -1)
Cho M(1;2) là điểm biểu diễn số phức z. Tìm tọa độ của điểm N biểu diễn số phức w = z + 2 z ¯ .
A. N = (3;-2)
B. N = (2;-3)
C. N = (2;1)
D. N = (2;3)
Cho số phức z = 1 + 3 i . Gọi A,B lần lượt là điểm biểu diễn của các số phức (1+i)z và (3-i)z trong mặt phẳng tọa độ Oxy. Tính độ dài đoạn AB.