∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2
Do đó:
S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1
đề bài này sao sao ý của mik là nhỏ hơn hoặc bằng a+b
∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2
Do đó:
S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1
đề bài này sao sao ý của mik là nhỏ hơn hoặc bằng a+b
cho hai số không âm a và b thỏa mãn a2+b2=a+b. Tìm GTLN của biểu thức S= a/(a+1)+b/(b+1)
cho hai số không âm a và b thỏa mãn : a^2 + b^2 = a + b . Tìm GTLN của biểu thức :
S = a/a+1 + b/b+1
Cho hai số không âm a và b thoả mãn a2+b2 ≤ a+b . Tìm giá trị lớn nhất của biểu thức sau :
P= 2020 + \(\left(\dfrac{a}{a+1}+\dfrac{b}{b+1}\right)^{2021}\)
Cho hai số a và b không âm thỏa mãn a^2+b^2=a+b. Tìm GTLN của S= a/a+1 + b/b+1
Cho hai số không âm a và b thoả mãn a2+b2=a+b. Tìm GTLN của biểu thức:
\(S=\frac{a}{a+1}+\frac{b}{b+1}\)
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
a) Tìm x sao cho giá trị của biểu thức x 2 + 1 không lớn hơn giá trị của biểu thức
b) Cho hai số a, b > 0 và a + b = 1 . C h ứ n g m i n h : a 2 + b 2 ≥ 1 / 2
Cho hai số không âm a và b thỏa mãn a2 + b2 = a + b. Tìm giá trị lớn nhất của biểu thức:
\(S=\frac{a}{a+1}+\frac{b}{b+1}\)
Cho a, b, c là các số thực thỏa mãn a ≥ 3 và abc = 1. Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{2}{3}\).a2 + b2 + c2 - (ab + bc + ca).