Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vuong hien duc

cho hai số hữu tỉ \(\frac{a}{b};\frac{c}{d}\)(b > 0 : d >0 ) Chứng tỏ rằng :

a,\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow a\cdot d< b\cdot c\)

b, \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

ST
29 tháng 7 2018 lúc 22:31

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2) => đpcm

Doraemon
31 tháng 8 2018 lúc 10:31

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a, ta có:

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) => đpcm.


Các câu hỏi tương tự
Đồng Đức Long
Xem chi tiết
Đoàn Thu Thuỷ
Xem chi tiết
Taro Misaki
Xem chi tiết
Bui Cam Lan Bui
Xem chi tiết
Bích Nguyễn Ngọc
Xem chi tiết
vuong thi sinh
Xem chi tiết
Linh Zeus
Xem chi tiết
Trần Hoàng	Anh
Xem chi tiết
Đình Thị Ngọc Mai
Xem chi tiết