a, Vì b,d > 0 -> ad/bd < cb/bd -> ad<bc
b, ad<bc -> ad/bd < bc/bd ( vì b,d > 0 => bd>0) => a/b < c/d
a) \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
b) \(ad< bc\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
\(ad< bc\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)