\(2a+b=2\Rightarrow b=2-2a\)
\(ab=a\left(2-2a\right)=-2a^2+2a=-2\left(a-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};1\right)\)
\(2a+b=2\Rightarrow b=2-2a\)
\(ab=a\left(2-2a\right)=-2a^2+2a=-2\left(a-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};1\right)\)
Cho a, b, c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\). Chứng minh rằng: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{c^2+a^2}+\dfrac{1}{a^2+b^2}\le\dfrac{a^3+b^3+c^3}{2abc}+3\)
Mọi người giúp em với ạ, chiều em phải nộp rồi ạ T.T
Cho a, b, c >0 thỏa mãn: abc=1. CM: \(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Cho a,b là các số thực thỏa mãn a2+b2-ab=4.CMR \(\dfrac{8}{3}\le a^2+b^2\le8\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2+abc=4\). Tìm GTNN của biểu thức \(P=\dfrac{ab}{a+2b}+\dfrac{bc}{b+2c}+\dfrac{ca}{c+2a}\)
Cho 3 số thực dương a;b;c. Chứng minh:
\(\dfrac{2a^3}{a^6+bc}+\dfrac{2b^3}{b^6+ca}+\dfrac{2c^3}{c^6+ab}\le\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\)
Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng
\(\frac{1}{a^2+2b+3}+\frac{1}{b^2+2c+3}+\frac{1}{c^2+2a+3}\le\frac{1}{2}\)
Chứng minh rằng: Nếu 3 số thực a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\) thì trong 3 số đó luôn tồn tại 2 số đối nhau
Cho a, b thỏa mãn: 4a-6b=1. Chứng minh: \(4a^2+9b^2\ge\dfrac{1}{8}\)