cho 2 số a,b là các số nguyên dương. chứng minh nếu tích(18a+13b)(4a+6b)chia hết cho 35 thì tích đó có ít nhất 1 ước là số chính phương\
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a,b,c là các số nguyên và a + b + c chia hết cho 5. Chứng minh a5 + b5 + c5 chia hết cho 5
a và b là 2 số nguyên. Chứng minh rằng:
a. Nếu a chia 13 dư 2 và b chia 13 dư 3 thì a^2+b^2chia hết 13
b. 10a^2+5b^2+12ab+4a-6b+13 lớn hơn hoặc bằng 0
Bài 1:
Tìm số tự nhiên n sao cho n + 24 và n - 65 đều là hai số chính phương
Bài 2:
Cho A = p4 trong đó p là số nguyên tố
a) A có những ước dương nào?
b) Chứng minh tổng các ước dương của A là một số chính phương
Bài 3:
Cho 3 số nguyên x ; y ; z sao cho x = y + z. Chứng minh rằng 2(xy-yz+zx) là tổng của 3 số chính phương
chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
Tổng của các số nguyên dương x, sao cho x+56 và x+113 đều là số chính phương
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)