Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trúc Giang

Cho a,b,c là các số nguyên và a + b + c chia hết cho 5. Chứng minh a5 + b5 + c5 chia hết cho 5

Nguyễn Việt Lâm
18 tháng 4 2021 lúc 11:52

Đặt \(A=a^5+b^5+c^5\)

\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)

Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5

Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5

Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)

Vậy \(B=a^5-a⋮5\) với mọi a nguyên

Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c

\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)

(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))


Các câu hỏi tương tự
Nguyễn Hải An
Xem chi tiết
Kamato Heiji
Xem chi tiết
Nguyễn Bảo Gia Huy
Xem chi tiết
Hạ Vy
Xem chi tiết
Hạ Vy
Xem chi tiết
Lê Thùy Nhi
Xem chi tiết
0o0^^^Nhi^^^0o0
Xem chi tiết
Vũ Phương Huyền
Xem chi tiết
U Suck
Xem chi tiết