Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hai hình thang ABCD và ABEF có chung đáy lớn AB và không cùng nằm trong một mặt phẳng.

a) Tìm giao tuyến của các mặt phẳng sau: (AEC) và (BFD), (BCE) và (ADF).

b) Lấy điểm M thuộc đoạn DF. Tìm giao điểm của đường thẳng AM với mặt phẳng (BCE).

c) Chứng minh hai đường thẳng AC và BF không cắt nhau.

Giải bài 1 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Cao Minh Tâm
19 tháng 3 2019 lúc 15:08

a) Giao tuyến của các cặp mặt phẳng

*Giao tuyến của (AEC) và (BFD)

• Trong hình thang ABCD, AC cắt DB tại G, ta có:

Giải bài 1 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Tương tự, AE cắt BF tại H,

Ta có :

Giải bài 1 trang 77 sgk Hình học 11 | Để học tốt Toán 11 ⇒ H ∈ (AEC) ∩ (BFD).

Vậy GH = (AEC) ∩ (BFD)

*Giao tuyến của (BCE) và (ADF)

Trong hình thang ABCD, BC cắt AD tại I, ta có: I ∈ (BCE) ∩ (ADF)

Trong hình thang ABEF, BE cắt AF tại K, ta có: K ∈ (BCE) ∩ (ADF)

Vậy IK = (BCE) ∩ (ADF)

b) Giao điểm của AM với mp(BCE)

Trong mp(ADF), AM cắt IK tại N, ta có:

N ∈ IK ⊂ (BCE)

Vậy N = AM ∩ (BCE).

c) Giả sử AC cắt BF.

⇒ Qua AC và BF xác định duy nhất 1 mặt phẳng.

Mà qua A và BF có duy nhất mặt phẳng (ABEF)

⇒ AC ⊂ (ABEF)

⇒ C ∈ (ABEF) (Vô lý).

Vậy AC và BF không cắt nhau.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
le phan
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Đặng Thị Ngọc Khánh
Xem chi tiết
Pham Trong Bach
Xem chi tiết