Hai hình cầu A và B có các bán kính tương ứng là x và 2x (cm). Tỉ số thể tích của hai hình cầu này là :
A.1 : 2 B.1 : 4
C.1 : 8 D.một kết quả khác
Diện tích S của hình tròn được tính bởi công thức S = π R 2 , trong đó R là bán kính của hình tròn.
a) Dùng máy tính bỏ túi, tính các giá trị của S rồi điền vào các ô trống trong bảng sau (π ≈ 3,14, làm tròn kết quả đến chữ số thập phân thứ hai).
R (cm) | 0,57 | 1,37 | 2,15 | 4,09 |
S = πR2 |
(Xem bài đọc thêm về máy tính bỏ túi dưới đây.)
b) Nếu bán kính tăng gấp 3 lần thì diện tích tăng hay giảm bao nhiêu lần?
c) Tính bán kính của hình tròn, làm tròn kết quả đến chữ số thập phân thứ hai, nếu biết diện tích của nó bằng 79,5 cm2.
Cho tam giác ABC cân tại A nội tiếp đgtròn tâm O bán kính R. Hai tiếp tuyến của đgtròn tâm O bán kính R tại A và B cắt nhau tại điểm S.
a) CM 4 điểm S A O B cùng nằm trên một đgtròn
b) giả sử R = 3cm SA= 4cm .hãy tính độ dài đgtròn đi qua 4 điểm S A O B
c) Hai đg thẳng SO và BCcắt nhau tại điểm T. CM góc ABS = góc ABC và BS= BT
Đây là một bài toán tổ hợp, yêu cầu xây dựng một mô hình thỏa mãn các tính chất đã cho. Bài toán bắt đầu từ hai định nghĩa sau: Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập cân bằng nếu với hai điểm A, B thuộc S thì tồn tại điểm C thuộc S sao cho CA = CB (tức là C nằm trên trung trực AB).
Ví dụ 3 đỉnh của một tam giác đều là một tập cân bằng, còn 4 đỉnh của một hình vuông thì không cân bằng. Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập không tâm nếu không tồn tại 4 điểm A, B, C, D thuộc S sao cho DA = DB = DC. Nói cách khác, nếu 3 điểm A, B, C thuộc S thì tâm đường tròn ngoại tiếp của tam giác ABC không thuộc S.
Đề toán yêu cầu:
a) Chứng minh rằng với mọi n ≥ 3, tồn tại một tập cân bằng gồm n điểm trên mặt phẳng.
b) Tìm tất cả các giá trị n ≥ 3 sao cho tồn tại tập hợp gồm n điểm trên mặt phẳng, cân bằng và không tâm.
Cho một hình nón có bán kính đường tròn đáy là r (cm), chiều cao 2r (cm) và một hình cầu có bán kính r (cm). Hãy tính:
a, Diện tích mặt cầu, biết diện tích toàn phần của hình nón là 21,06 c m 2
b, Thể tích của hình nón, biết thể tích của hình cầu là 15,8 c m 3
Cho hình chữ nhật ABCD có AB = 4 cm; AC = 2 cm. Đường thẳng vuông góc với AC tại C cắt các đường thẳng AB và AD lần lượt tại E và F
a) C/m: Tứ giác EBDF nội tiếp.
b) Gọi giao điểm của BD và È là I. Tính ID
c) Gọi M là điểm thay đổi trên AB (M khác A,B). Đường thẳng CM cắt đường thẳng AD tại N. Gọi S1= SCME , S2=SAMN
Xác định vị trí của M để S1=\(\frac{3}{2}\).S2
1/Chu vi hình tròn có bán kính 5 cm là :
A. 2,5π cm
B. 5π cm
C. 2π cm
D. 10π cm
2/ Diện tích hình quạt tròn có d=4cm và số đo cung = 36° là :
A.4π/5 dm2
B. 8π/5 dm2
C. 2π/5 dm
D. 2π/5 dm2
3/ Khẳng định nào sau đây là khẳng định đúng :
A. Hai cung có số đo = nhau thì = nhau
B. Góc nội tiếp chắn nửa đường tròn là góc vuông
C. Trong 1 đường tròn, các góc nội tiếp = nhau thì cùng chắn 1 cung
D. Tứ giác có tổng hai góc bằng 180° thì nội tiếp được đường tròn
4/ Cho đường tròn tâm O, có đường kính AB vuông góc với dây CD tại E. Khẳng định nào sau đây sai :
A. AC>AD
B. CE>ED
C. cung AC > cung AD
D. cung BC > cung BD
5/ Trên đường tròn tâm O lấy hai điểm A, B sao cho góc AOB=60°. Số đo cung nhỏ AB là :
A. 120°
B. 300°
C. 30°
D. 60°
6/ Bán kính của đường tròn có diện tích 9π (cm2) là
A. 9 cm
B. 3 cm
C. 6 cm
D. 4.5 cm
7/ Tìm hai số tự nhiên biết tổng của hai số tự nhiên bằng 2017, nếu lấy số lớn chia cho số nhỏ thì được thương là 117 dư 11. Gọi x,y là hai số tự nhiên cần tìm ( x>y ) . Khi đó ta lập được hệ pt nào sau đây :
A.{x+y =2017
x=117y+11
B. {x+ y = 2017
y=117x +11
C. {x+y=2017
x+117y= 11
D. { x+y=2017
x=117y-11
8/ Cho pt ẩn x : x2 + ( m+1 )x +m = 0 ( m là tham số ). ĐK của m để pt có nghiệm là :
A. với m>=0
B. với mọi giá trị của m
C. với m=0
D. với m>0
9/ Pt 5x2 -15x +10 =0 có nghiệm là :
A. S=15
B. S=10
C. S=3
D. S= -3
10/ Độ dài đường tròn tâm O bán kính 3 cm là bao nhiêu ?
A. 9π ( cm )
B. 6π ( cm )
C. 9π ( cm2 )
D. 6π ( cm2 )
11/ Điểm nào sau đây thuộc đồ thị hàm số x=-2
A. M(2;-4)
B. P (1;1 )
C. Q ( -4;2 )
D. N (2;4 )
12/ Nghiệm của hệ pt {2x+y=2 là ?
x - y=4
A. ( -2;2 )
B. ( 1;-5 )
C. ( 3; -1 )
D. ( 2; -2 )
13/ Hệ pt {2x-3y=m-1
4x+my=-14
vô số nghiệm khi :
A. m=1
B. m=-1
C. m= 6
D. m=-6
Cho đt (O;r) và một điểm S nằm ngoài đường tròn (O). Từ S kẻ hai tiếp tuyến SA và SB với đường tròn (O). (A và B là hai tiếp điểm).\
a) CM SAOB nội tiếp và SO vuồn gó AB.
b) Vẽ đường thẳng a đi qua S và cắt (O) tại hai điểm M và N (với a không đi qua tâm O, M nằm giữa S và N.) Gọi H là giao điểm của SO và AB, I là trung điểm của MN. Hai đường thẳng OI và AB cắt nhau tại E.
1) CM: OI.OE =R2
2) Cho SO =2R và MN = R√3. Hãy tính SM theo R.
Cho đường tròn (O;R); AB và CD là hai đường kính khác nhau của đường tròn. Tiếp tuyến tại B của đường tròn (O;R) cắt các đường thẳng AC, AD thứ tự tại E và F. a. Chứng minh tứ giác ACBD là hình chữ nhật b. Chứng minh ΔACD ~ ΔCBE c. Chứng minh tứ giác CDFE nội tiếp được đường tròn. d. Gọi S, S,, S,,, thứ tự là diện tích của ΔAEF, ΔBCE và ΔBDF. Chứng minh: √S,+√S,,=√s
Giúp mk nhanh nha câu d ý mn