Cho nửa đường tròn (O) đường kính BC. Vẽ 2 tiếp tuyến Bx, Cy của (O). Gọi A là điểm trên nửa đường tròn sao cho AB < AC. Tiếp tuyến tại A của (O) cắt Bx, Cy tại M, N.
a) Chứng minh MN = BM + CN
b) Chứng minh OM ⊥ AB và OM // AC
c) Vẽ đường cao AH của tam giác ABC. Chứng minh AH^2 = AB.AC
d) Đường thẳng AC cắt Bx tại D. Chứng minh OD ⊥ BN
Cho nửa đường tròn (O) đường kính BC. Vẽ 2 tiếp tuyến Bx, Cy của (O). Gọi A là điểm trên nửa đường tròn sao cho AB < AC. Tiếp tuyến tại A của (O) cắt Bx, Cy tại M, N.
a) Chứng minh MN = BM + CN
b) Chứng minh OM ⊥ AB và OM // AC
c) Vẽ đường cao AH của tam giác ABC. Chứng minh AH^2 = AB.AC.snB.cosB
d) Đường thẳng AC cắt Bx tại D. Chứng minh OD ⊥ BN
Cho nửa đường tròn tâm O đường kính BC. Vẽ hai tiếp tuyến Bx và Cy của (O) . Gọi A là điểm trên nửa đường tròn sao cho AB < AC. Tiếp tuyến tại A của (O) cắt Bx và Cy tại M và N. Đường thẳng AC cắt Bx tại D .
Cmr : OD vuông góc BN
Cho điểm M nằm trên đường tròn O, đường kính BC = 2R. Vẽ tiếp tuyến Bx, Cy. Tiếp tuyến tại M của O cắt Bx,Cy lần lượt tại D,E.
a/ Chứng minh BD//CE
b/ So sánh DE và BD + CE
1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB
2. Cho (O) và đường thẳng d không cắt (O). Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh ΔOMN cân
1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB
2. Cho (O) và đường thẳng d không cắt (O). Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh \(ΔOMN\) cân
1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB
2. Cho (O) và đường thẳng d không cắt (O). Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh \(\Delta OMN\) cân
Cho (O) tiếp xúc ngoài vs (O') tại A. Đường thẳng kẻ qua A cắt (O) ở B, cắt (O') ở C. Qua B kẻ tiếp tuyến Bx vs (O), qua C kẻ tiếp tuyến Cy vs (O').
a) OB// O'C
b) Bx//Cy
CÁC BẠN GIÚP MÌNH VẼ HÌNH VÀ GIẢI RÕ HỘ NHA! THANK YOU NHA!!!
Cho (O) tiếp xúc ngoài vs (O') tại A. Đường thẳng kẻ qua A cắt (O) ở B, cắt (O') ở C. Qua B kẻ tiếp tuyến Bx vs (O), qua C kẻ tiếp tuyến Cy vs (O').
a) OB// O'C
b) Bx//Cy
CÁC BẠN GIÚP MÌNH VẼ HÌNH VÀ GIẢI RÕ HỘ NHA! THANK YOU NHA!!!