Cho đường tròn tâm O' bán kính 4.5 cm; đường tròn tâm O bán kính 6cm. Hai đường tròn cắt nhau tại A và B ( O và O' thuộc 2 nửa mặt phẳng bờ là AB ). Gọi I là trung điểm của OO'. Qua A kẻ đường thẳng vuông góc với IA cắt đường tròn tâm O và đường tròn tâm O' lần lượt tại C và D
a) CM AC = AD b) Cho góc OAO' = 90 độ. Tính OO' và AB
1/ cho tam giác ABC cân đỉnh A. đường cao BE;CF cắt nhau tại H. D là trung điểm của BC.
a/ chứng minh 4 điểm B;F;E;C cùng một đường tròn
b/ 4 điểmB;H;E;C có thuộc đường tròn không? vì sao?
c/ xác định tâm đường tròn đi qua 4 điểm A;F;B;C
d/ có thể khẳng định điểm B nằm ngoài đường tròn đi qua 4 điểm A;F;B;C không?
e/ chứng minh EF < BC
2/ cho ( O;R ); ( O';R') cắt nhau tại A;B (O;O' thuộc 2 nửa mặt phẳng bờ AB). trong cùng một nửa mặt phẳng bờ OO' vẽ hai bán kính OC; O'D sao cho OC//O'D. gọi E là điểm đối xứng của B qua OO'
a/ chứng minh AOBO' là hình thoi
b/ chứng minh AB;OO';CE đồng quy
c/ chứng minh A là trực tâm của tam giác BCD
Cho hai đường tròn (O; 2cm), (O’; 3cm), OO’ = 6cm. Vẽ đường tròn (O’; 1cm) rồi kẻ tiếp tuyến OA với đường tròn đó (A là tiếp điểm). Tia O’A cắt đường tròn (O’; 3cm) ở B. Kẻ bán kính OC của đường tròn (O) song song với O’B, B và C thuộc cùng một nửa mặt phẳng có bờ OO’. Chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O; 2cm), (O’; 3cm).
Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@
Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :
a) A, I, H, B là 4 đỉnh của 1 hình bình hành
b) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính R
Bài 2 : Cho đường tròn tâm O, đường kính AB và một điểm M di động trên nửa đường tròn. Vẽ đường tròn tâm E tiếp xúc với (O) tại M, tiếp xúc AB tại N. (E) cắt AM, MB tại điểm thứ hai lần lượt là C, D
a) Chứng minh CD // AB
b) Kẻ bán kính OK của (O) vuông góc với AB (K thuộc nửa mặt phẳng bờ AB không chứa M). Chứng minh M, N, K thẳng hàng
Bài 3 : Cho M, N là các giao điểm của hai đường tròn (O) và (O'). Đường thẳng OM cắt (O), (O') lần lượt tại điểm thứ hai là A, B. Đường thẳng O'M cắt (O), (O') lần lượt tại điểm thứ hai là C, D. Chứng minh : ba đường thẳng AC, BD, MN đồng quy tại 1 điểm
Cho hai đường tròn tâm O bán bán kính R và tâm O' bán kính R' cắt nhau tại A và B. Từ điểm C trên tia đối của tia AB kẻ các tiếp tuyến CD, CE với đường tròn tâm O (D, E là các tiếp điểm và E nằm trong đường tròn tâm O'). AD và AE cắt đường trong tâm O' lần nữa lần lượt tại M và N. DE cắt MN tại I.
a) Chứng minh tứ giác MIBD nội tiếp.
b) Chứng minh I là trung điểm của MN.
Cho nửa đường tròn tâm O, đường kính AB và C là điểm thuộc nửa đường tròn (C không trùng với các điểm A và B). Kẻ đường thẳng d là tiếp tuyến tại C của nửa đường tròn (O). trên đường thẳng d và thuộc nửa mặt phẳng có chứa điểm C với bờ là đường thẳng AB, lấy hai điểm D, E sao cho AD song song với BE. Gọi I là trung điểm của đoạn thẳng DE.
a) Chứng minh: OI // AD và AD + BE = 2.OI;
b) Chứng tỏ tam giác AIO và tam giác DIO có diện tích bằng nhau;
c) Vẽ đường tròn tâm I đường kính DE. Chứng tỏ đường tròn (I) đã cho và đường thẳng AB tiếp xúc nhau.
Cho nửa đường tròn tâm O, đường kính AB và C là điểm thuộc nửa đường tròn (C không trùng với các điểm A và B). Kẻ đường thẳng d là tiếp tuyến tại C của nửa đường tròn (O). trên đường thẳng d và thuộc nửa mặt phẳng có chứa điểm C với bờ là đường thẳng AB, lấy hai điểm D, E sao cho AD song song với BE. Gọi I là trung điểm của đoạn thẳng DE.
a) Chứng minh: OI // AD và AD + BE = 2.OI;
b) Chứng tỏ tam giác AIO và tam giác DIO có diện tích bằng nhau;
c) Vẽ đường tròn tâm I đường kính DE. Chứng tỏ đường tròn (I) đã cho và đường thẳng AB tiếp xúc nhau.
Cho đường tròn tâm O bán kính BC.Lấy điểm A thuộc đường tròn ,trên cùng 1 nửa mặt phẳng bờ AB chứa A vẽ tiếp tuyến Bx cắt CA tại D.Từ D kẻ tiếp tuyến DE với E là tiếp điểm. Gọi I là giap điểm của OD và BE.a) cho F là trung điểm của BD chứng minh FA là tiếp tuyến của đường tròn tâm O,b) Chứng minh rằng góc DEA = góc DCE,c) KẺ EH vuông góc với BC tại H cắt AC tại G.Chứng minh IG//BC
Cho tam giác đều ACB và ACD, cạnh a. Lần lượt lấy B và D làm tâm vẽ hai đường tròn bán kính a. Kẻ các đường kính ABE và ADF. Trên cung nhỏ CE của đường tròn tâm B lấy điểm M (không trùng với E và C). Đường thẳng CM cắt đường tròn tâm D tại điểm thứ hai là N. Hai đường thẳng EM và NF cắt nhau tại điểm T. Gọi H là giao điểm của AT và MN.
Chứng minh:
MNT là tam giác đều.
Cho(O;R) tiếp xúc ngoài (O':R')tại A. R>R'. Bán kính OB// bán kính O'B'. (B và B' thuộc nửa mặt phẳng bờ OO'). BB' cắt OO' tại K.
a) \(\widehat{BAI}\)=?
b) OK=?
c)Tiếp tuyến chung ngoài của hai đường tròn đi qua K
d) Khi các bán kính OB,O'B' thay đổi thì trọng tâm G của tam giác ABB' di chuyển trên đường nào ?