Cho hai đường tròn (O; R) và (O' ; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O') cùng tiếp xúc trong với đường tròn lớn (O''; R'') lần lượt tại E và F. Tính bán kính R" biết chu vi tam giác OO'O" là 20cm.
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (O) đường kính BH và đường tròn tâm O' đường kính CH, hai đường tròn này cắt AB, AC thứ tự tại E và F
a, Tứ giác AEHF là hình gì?
b, Chứng minh EF là tiếp tuyến chung của (O) và (O’)
c, Chứng minh đường tròn đường kính OO' tiếp xúc với EF
d, Cho đường tròn tâm I bán kính r tiếp xúc với EF, (O) và (O’). Tính r theo BH và CH?
Hai đường tròn (O ; R) và (O' ; r) tiếp xúc ngoài với nhau. Gọi AB là tiếp tuyến chung của hai đường tròn, A∈(O),B∈(O′).
a) Tính độ dài AB.
b) Cho R=36cm,r=9cm. Tính bán kính của đường tròn (I) tiếp xúc với đường thẳng AB và tiếp xúc ngoài với hai đường tròn (O) và (O').
Cho hai đường tròn (O; R) và (O'; R') tiếp xúc ngoài tại A. Vẽ tiếp tuyến chung ngoài tiếp xúc (O) và (O') lần lượt ở B và C. Tiếp tuyến chung trong cắt BC ở I. Gọi E, F thứ tự là giao điểm của IO với AB và của IO' với AC
a, Chứng minh A, E, I, F cùng thuộc một đường tròn. Xác định tâm K của đường tròn này
b, Chứng minh IE.IO + IF.IO' = 1 2 A B 2 + A C 2
c, Gọi P là trung điểm của OA. Chứng minh PE tiếp xúc với (K)
d, Cho OO' cố định và có độ dài 2a. Tìm điều kiện của R và R' để diện tích tam giác ABC lớn nhất
Cho hai đường tròn ( O ) bán kính R và (O') bán kính R' tiếp xúc ngoài với nhau tại M. Đường thằng OO' cắt ( O) tại C, Cắt (O') tại D. Tiếp tuyến chung ngoài tiếp xúc với (O) tại A và (O') tại B, tiếp tuyến chung trong cắt AB tại I. Gọi B' là giao điểm của BM và (O) , B' khác M
a. Chứng minh AB2 = 4R.R'
b. Chứng minh A , O , B thẳng hàng
c. cho biết R= 3R' tính diện tích tứ giác MOIB theo R
Cho hai đường tròn (A) và (B) tiếp xúc ngoài với nhau. Đường tròn (C;R) tiếp xúc trong với cả hai đường tròn này. Cho biết chu vi tam giác ABC=6(cm). Tính bán kính R.
Cho hai đường tròn (O1;R1) và (O2:R2) tiếp xúc ngoài với nhau. Đường thẳng d tiếp xúc với (O1) và (O2) lần lượt tại D và F. Vẽ đường tròn (O;R) tiếp xúc với đường tròn (O1) và (O2) và tiếp xúc với đường thẳng d tại E.
Chứng minh rằng: \(\sqrt{RR_1}+\sqrt{RR_2}=\sqrt{R_1R_2}\)
Cho hai đường tròn (O;R) và (O;r) tiếp xúc ngoài tại A. Một đường thẳng (d) tiếp xúc với cả hai đường tròn trên tại B và C với B ∈ (O), C ∈ (O’).
a) Chứng minh tam giác ABC vuông
cho 2 đường tròn (o r) và (o' r') tiếp xúc ngoài tại A.Một tiếp tuyến chung tại BC của (o),(o') . a) chứng minh đường tròn đường kính BC tiếp xúc với đường thẳng OO' và đường tròn OO' tiếp xúc với đường thẳng BC.b) Tính BC theo R và R'