CHO 2 ĐOẠN THẲNG AB VÀ CD CẮT NHAU TẠI TRUNG ĐIỂM O CỦA MỖI ĐOẠN THẲNG
A> CHỨNG MINH AC=BD VÀ AC//BD
AD=BC VÀ AD//BC
B> VẼ CH VUÔNG GÓC VỚI AB TẠI H . TRÊN TIA ĐỐI CỦA OH LẤY ĐIỂM I SAO CHO OI=OH . CHỨNG MINHH RẰNG OI VUÔNG GÓC VỚI AB
Cho đoạn thẳng AB và CD cắt nhau tại trung điểm I của mỗi đoạn
a) CA//BD , AD//CB
b) H , K là chân đường vuông góc kẻ từ C , D tới AB. Chứng minh: HA=KB
c) E là trung điểm AC , trên tia đối của tia CB lấy M sao cho EM=ED .Chứng minh: C là trung điểm của MB
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.
Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.
Bài 3: Cho ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b) DBC = BDE
Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.
Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD BC
Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a) ABM = DCM. b) AB // DC. c) AM BC
Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.
Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.
Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?
Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.
11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN
1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA
a) Chứng minh: Tam giác OAH = tam giác OBH
b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN
c) Chứng minh AB vuông góc với OH
d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot
2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)
a) Chứng minh góc ABH = góc ACK
b) BH cắt CK tại E. Chứng minh AE vuông góc BC
c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?
3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a) Chứng minh: Tam giác AMB = tam giác DMC
b) Chứng minh: AC = BD và AC //BD
c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC
4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ
a) Tính số đo góc ACB
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC
c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.
Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK.
a) Chỉ ra hai tam giác bằng nhau và chứng minh.
b) Chỉ ra các cạnh các góc tương ứng.
c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.
Bài 3: Cho ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng:
a) BC // ED b) DBC = BDE
Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.
Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D.
Chứng minh: a) DB = DC b) AD BC
Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh:
a) ABM = DCM. b) AB // DC. c) AM BC
Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.
Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh
a) PM = PN.
b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.
Bài 9: Cho tam giác ABC có góc A bằng 900. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB.
a) Chứng minh: AB = DE b) Tính số đo góc EDC?
Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh:
a) MA = MD b) BA điểm A, M, D thẳng hàng.
Bài 11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh:
a) CP//AB b) MB = CP c) BC = 2MN
Bài 12: Cho ∆ABC gọi M, N lần lượt là trung điểm của AC, AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh :
a) ∆AMD = ∆CMB
b) AE // BC
c) A là trung điểm của DE
Bài 13: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh: AB = CD
b) Chứng minh: BD // AC
c) Tính số đo góc ABD
Bài 14: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD
b) ∆BMD = ∆CNE
c) AM là tia phân giác của góc BAC
Bài 15: Cho ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh : ABM = ACM
b) Từ M vẽ MH AB và MK AC. Chứng minh BH = CK
c) Từ B vẽ BP AC, BP cắt MH tại I. Chứng minh IBM cân.
Bài 16: Cho ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
a) AB // HK b) AKI cân c) d) AIC = AKC
Bài 17: Cho ABC cân tại A ( Â < 90o ), vẽ BD AC và CE AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: ABD = ACE b) Chứng minh AED cân
c) Chứng minh AH là đường trung trực của ED
d)Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh
Bài 18: Cho ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh:
a) HB = CK b) c)HK // DE d) AHE = AKD
Bài 19: Cho ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh:
a) ADE cân b) ABD = ACE
Bài 20: Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD.
Chứng minh:
a) BE = CD. b) BMD = CME
c) AM là tia phân giác của góc BAC.
Bài 21: Cho tam giác ABC (AB < AC) có AM là phân giác của góc A (M thuộc BC).Trên AC lấy D sao cho AD = AB.
a) Chứng minh: BM = MD
b) Gọi K là giao điểm của AB và DM . Chứng minh: DAK = BAC
c) Chứng minh: AKC cân
d) So sánh: BM và CM.
Cho góc nhọn xOy, trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Gọi H là trung điểm của đoạn thẳng AB.
a) Chứng minh: ∆OAH = ∆OBH
b) Từ A vẽ đường thẳng vuông góc với OA, cắt tia OH tại C. Chứng minh: CB ⊥ OB.
c) Gọi I là trung điểm đoạn thẳng OH, từ I vẽ đường thẳng vuông góc với OH, cắt tia OA tại M. Kẻ HK vuông góc với BC tại K. Chứng minh: ba điểm M, H, K thẳng hàng.
có vẽ hình
1) Cho góc nhọn xOy, trên tia Ox lấy hai điểm A và B ( A nằm giữa O và B ), trên tia Oy lấy C và D ( C nằm giữa O và D ) sao cho OA = OC, OB =BC
a, Chứng minh AD = BC
b, AD cắt BC tại I, Chứng minh AI = IC và IB - ID
c, Chứng minh OI là tia phân giác của góc xOy
2) Cho tam giác nhọn ABC. Trên nữa mặt phẳng bờ AC không chứa B, vẽ tia Ax vuông góc với AC. Trên nưa mặt phẳng bờ AB không chưa C, vẽ tia Ay vuông góc với AB. Trên tia Ax lấy D sao cho AD = AC. Trên Ay lấy E sao cho AE = AB
a, Chứng minh: BD = EC
b, Chứng minh BD vuông góc với EC
c, Kẻ AH vuông góc với BC tại H. Tia đối của AH cắt ED tại M, Chứng minh ME=MD
cho góc xOy khác góc bẹt, Ot là tia phân giác của góc xOy. trên tia lấcy điểm H, qua H vẽ đường thẳng vuông góc với Ot, cắt Ox tại A, Oy tại B
a) chứng minh AH=BH
b) trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD ( A nằm giữa O và C ). chứng minh AD=BC
c) chứng minh AB//CD
d) chứng minh rằng các đường thẳng AD, BC, OH cùng đi qua 1 điểm
Cho ∆ABC vuông tại A có BC = 15 cm , AC = 10 cm
a) Tính độ dài đoạn thẳng AB.
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ∆BCD cân.
c) Vẽ BE vuông góc với CD tại E cắt AC tại H. Chứng minh góc HBC = góc HDC
d) Trên tia đối của tia AC lấy điểm M sao cho A là trung điểm của HM. Chứng minh ∆ CMD là tam giác vuông.
• Giải giúp mình câu d với ạ ❤•
* Cảm ơn nhìu ạ ❤🌹*