TK
gọi I là điểm thỏa mãn 2vt IA-3vt IB=vt 0
có 2 vecto MA - 3 vecto MB = vecto 0
<=>2vt MI+2vt IA -3vt MI-3vt IB=vt 0
<=>-vt MI=vt0
<=> vt IM= vt 0
<=> M trùng với I
TK
gọi I là điểm thỏa mãn 2vt IA-3vt IB=vt 0
có 2 vecto MA - 3 vecto MB = vecto 0
<=>2vt MI+2vt IA -3vt MI-3vt IB=vt 0
<=>-vt MI=vt0
<=> vt IM= vt 0
<=> M trùng với I
Cho tứ giác $A B C D$. Xác định điểm $M, N, P$ sao cho a) $2 \overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\overrightarrow{0}$.
b) $\overrightarrow{N A}+\overrightarrow{N B}+\overrightarrow{N C}+\overrightarrow{N D}=\overrightarrow{0}$.
c) $3 \overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}+\overrightarrow{P D}=\overrightarrow{0}$.
Cho trước hai điểm $A, B$ và hai số thực $\alpha, \beta$ thoả mãn $\alpha+\beta \neq 0$. Chứng minh rằng tồn tại duy nhất điểm I thoả mãn $\alpha \overrightarrow{I A}+\beta \overrightarrow{I B}=\overrightarrow{0}$. Từ đó, suy ra với điểm bất kì $M$ thì $\alpha \overrightarrow{M A}+\beta \overrightarrow{M B}=(\alpha+\beta) \overrightarrow{M I}$.
Cho tứ giác $A B C D$. Gọi hai điểm $M$ và $N$ theo thứ tự là trung điêm của các đoạn $A D, B C$.
a) Chứng minh rằng $\overrightarrow{M N}=\dfrac{1}{2}(\overrightarrow{A B}+\overrightarrow{D C})=\dfrac{1}{2}(\overrightarrow{A C}+\overrightarrow{D B})$.
b) Gọi $I$ là trung điểm của $M N$. Chứng minh rằng: $\overrightarrow{I A}+\overrightarrow{I B}+\overrightarrow{I C}+\overrightarrow{I D}=\overrightarrow{0}$.
Cho tam giác $A B C$ có $G$ là trọng tâm.
a) Hāy phân tích véctơ $\overrightarrow{A G}$ theo hai vectơ $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Gọi $E, F$ là hai điểm xác định bởi các điều kiện: $\overrightarrow{E A}=2 \overrightarrow{E B}, 3 \overrightarrow{F A}+2 \overrightarrow{F C}=\overrightarrow{0}$. Hāy phân tích $\overrightarrow{E F}$ theo hai vecto $\overrightarrow{A B}, \overrightarrow{A C}$.
Cho tam giác $A B C$. Gọi $M$ là trung điểm của $A B$ và $N$ là một điểm trên cạnh $A C$ sao cho $N A=2 N C$. Gọi $K$ là trung điểm $M N$. Phân tích vectơ $\overrightarrow{A K}$ theo $\overrightarrow{A B}$ và $\overrightarrow{A C}$.
Cho tam giác $A B C$. Gọi $M$ là trung điểm của $A B$ và $N$ là một điểm trên cạnh $A C$ sao cho $N A=2 N C$. Gọi $K$ là trung điểm $M N$. Phân tích vectơ $\overrightarrow{A K}$ theo $\overrightarrow{A B}$ và $\overrightarrow{A C}$.
Điểm $M$ gọi là chia đoạn thā̉ng $A B$ theo ti số $k \neq 1$ nếu $M A=k M B$. Chứng minh rā̀ng với mọi điểm $O$ ta có $\overrightarrow{O M}=\dfrac{\overrightarrow{O A}-k \overrightarrow{O B}}{1-k}$.
Cho lục giác đều $A B C D E F$ tâm $O$ cạnh $a$ :
a) Phân tích vectơ $\overrightarrow{A D}$ theo hai véctơ $\overrightarrow{A B}$ và $\overrightarrow{A F}$.
b) Tính độ dài của vecto $\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{B C}$ theo $a$.