Trả lời:
a. rút gọn biểu thức A.B:
A= 3\(\sqrt{7}\)-2\(\sqrt{7}\)+5\(\sqrt{7}\)-3=-3
B= \(\sqrt{x}\)-1 + \(\sqrt{x}\)=2\(\sqrt{x}\)-1
b. Tìm x để A=3B
ta có:
A=-3= 3 (2\(\sqrt{x}\)-1)
=> -3= 6\(\sqrt{x}\)-3
=> \(\sqrt{x}\)=0
Vậy x=0 thì A=3B
a,
A=\(3\sqrt{7}-\sqrt{28}+\sqrt{175}-3\)
=\(3\sqrt{7}-2\sqrt{7}+5\sqrt{7}-3\)
=\(6\sqrt{7}-3\)
B=\(\dfrac{X-\sqrt{X}}{\sqrt{X}}+\dfrac{X+\sqrt{X}}{\sqrt{X}+1}\)
=\(\sqrt{X}-1+\sqrt{X}\)
=\(2\sqrt{X}-1\)
b,
Đề giá trị của để giá trị biểu thức bằng ba lần giá trị biểu thức thì
\(6\sqrt{7}-3=3(2\sqrt{x}-1)\)
=\(6\sqrt{7}-3=6\sqrt{x}-3\)
=\(\sqrt{x}=6\sqrt{7}-3+3\)
=\(\sqrt{x}=6\sqrt{7}\)
=\(\sqrt{x}=\sqrt{7}\)
=\(x=7\)
A=\(6\sqrt{7}\)-3
B=2\(\sqrt{x}\)-1
a) 3\(\sqrt{7}\)-\(\sqrt{28}\)+\(\sqrt{175}\)-3\(=\)3\(\sqrt{7}\)-\(\sqrt{4\cdot7}\)+\(\sqrt{25\cdot7}\)-3\(=\)3\(\sqrt{7}\)-\(\sqrt{2^2\cdot7}\)+\(\sqrt{5^2\cdot7}\)-3\(=\)3\(\sqrt{7}\)-2\(\sqrt{7}\)+5\(\sqrt{7}\)-3\(=\)6\(\sqrt{7}\)-3

























