Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Linh

Cho H = \(\frac{7}{3}+\frac{13}{3^2}+\frac{19}{3^3}+.....+\frac{605}{3^{100}}\)

CMR \(3\frac{7}{9}< H< 5\)

Nguyễn Văn Hạ
19 tháng 2 2019 lúc 20:13

Ta có \(H=\frac{7}{3}+\frac{13}{3^2}+...+\frac{605}{3^{100}}\)

\(\Leftrightarrow3H=7+\frac{13}{3}+...+\frac{605}{3^{99}}\)

\(\Rightarrow2H=7+\frac{6}{3}+\frac{6}{3^2}+...+\frac{6}{3^{99}}-\frac{605}{3^{100}}\)

\(\Leftrightarrow2H=7+6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\frac{605}{3^{100}}\)

Mà \(6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)=3-\frac{1}{3^{99}}\)

\(\Rightarrow2H=7+3-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)

\(\Leftrightarrow2H=10-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)

\(\frac{1}{3^{99}}+\frac{605}{3^{100}}>0\)

\(\Rightarrow2H< 10\)

\(\Leftrightarrow H< 5\left(1\right)\)

Ta có \(2H=10-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)

\(\frac{1}{3^{97}}+\frac{605}{3^{98}}< 22\)

hay\(\frac{1}{3^{99}}+\frac{605}{3^{98}}< \frac{22}{9}\)

\(\Rightarrow2H>10-\frac{22}{9}=\frac{68}{9}=2\cdot\left(3+\frac{7}{9}\right)\)

\(\Rightarrow H>3+\frac{7}{9}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrowđpcm\)

Hoàng Sỹ Tiến Minh
11 tháng 10 lúc 20:49

 

Sai r

 


Các câu hỏi tương tự
Hoàng Thu Hà
Xem chi tiết
Nguyễn Minh Linh
Xem chi tiết
Lang Tu Hoa Hao
Xem chi tiết
Lê Thị Thanh Hằng
Xem chi tiết
Tứ diệp thảo mãi mãi yêu...
Xem chi tiết
Nguyễn Vũ Lan Anh
Xem chi tiết
hoang gia kieu
Xem chi tiết
Hỏa Long
Xem chi tiết
Tứ diệp thảo mãi mãi yêu...
Xem chi tiết