CM: Xét t/giác OCA và t/giác ODB
có: OC = OD (gt)
\(\widehat{O}\) : chung
OA = OB (gt)
=> t/giác OCA = t/giác ODB (c.g.c)
=> \(\widehat{OCA}=\widehat{ODB}\) (2 góc t/ứng)
Ta có: OB + BC = OC
OA + AB = OB
mà OB = OA (gt); OC = OB (gt)
=> BC = AB
Xét t/giác BEC có: \(\widehat{BEC}+\widehat{EBC}+\widehat{BCE}=180^0\)(tổng 3 góc của 1 t/giác)
Xét t/giác AED có: \(\widehat{AED}+\widehat{EAD}+\widehat{ADE}=180^0\) (tổng 3 góc của 1 t/giác)
Mà \(\widehat{BCE}=\widehat{EDA}\) (cmt); \(\widehat{CEB}=\widehat{AED}\) (đối đỉnh)
=> \(\widehat{CBE}=\widehat{EAD}\)
Xét t/giác EBC và t/giác EAD
có: BC = AD (cmt)
\(\widehat{BCE}=\widehat{ADE}\) (cmt)
\(\widehat{EBC}=\widehat{EAD}\) (cmt)
=> t/giác EBC = t/giác EAD (g.c.g)
=> EC = ED (2 cạnh t/ứng)
Xét t/giác OEC và t/giác OED
có: OC = OD (gt)
OE : chung
EC = ED (cmt)
=> t/giác OEC = t/giác OED (c.g.c)
=> \(\widehat{COE}=\widehat{EOD}\) (2 góc t/ứng)
=> OE là tia p/giác của góc COD (1)
Xét t/giác OCG và t/giác ODG
có: OC = OD (gt)
OG : chung
CG = DG (gt)
=> t/giác OCG = t/giác ODG (c.c.c)
=> \(\widehat{COG}=\widehat{DOG}\)(2 góc t/ứng)
=> OG là tia p/giác của góc COD (2)
Từ (1) và (2) => OE \(\equiv\)OG
=> O; E: G thẳng hàng