Cho góc xoy. Trên cạnh Ox lấy 3 điểm A,B,C sao cho OA=AB=BC. Trên cạnh Oy lấy 2 điểm E,F sao cho OF=EF. Lấy điểm K sao cho O là trung điểm của EK Gọi M là giao điểm GE và BE. CM
a, M là trung điểm của CE
b, K,A,M thẳng hàng
Cho góc xOy. Trên tia Õ lấy các điểm A,B,C sao cho OA=AB=BC . Trên tia Oy lấy hai điểm E và F sao cho OE=EF. Vẽ điểm K sao cho O là trung điểm của EK. Gọi M là gia điểm của CE và BF.Chứng minh rằng
a, M là trung điểm của EC
b, 3 điểm K,A,M thẳng hàng
cho góc nhọn xOy. trên tia Ox lấy điểm A trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ox lấy điểm C, trên tia Oy lấy điểm E sao cho OC=OE. gọi K là giao điểm của AE và BC, M là trung điểm của AB. CM:a) tam giác AOE=tam giác BOC. b)AK=BK. c) 3 điểm A, K,M thẳng hàng.
cho xOy tù. trên cạnh Ox lấy hai điểm A,B(Oa<OB), trên cạnh Oy lấy 2 điểm E,F(OE<OF) sao cho OA=OE<AB=EF.Gọi K là giao điểm của AF và BE . chứng minh;
a AF=BE
b tam giác OAF=tam giác OBE
c Gọi H là trung điểm của BF. Chứng minh ban điểm O K H thẳng hàng
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
Cho góc xOy khác góc bẹt trên tia Ox lấy các điểm D và B (OB>OD) trên tia Oy lấy các điểm E và C (OC>OE) sao cho OD=OE , OB=OC
a) CMR tam giá OBE = tam giác OCD
b) gọi K là giao điểm của BE và CD CMR DK=KE
c) gọi M là trung điểm của BC CMR O,K,M thẳng hàng
1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD
a) Chứng minh tam giác OAD = tam giác OCB
b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB
c) Chứng minh rằng OM là tia phân giác của góc xOy
2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC
a) Chứng minh tam giác ABM = tam giác ACM
b) Chứng minh AM vuông góc với BC.
c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB
d) Chứng minh EF = BC
3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B
a) Chứng minh rằng: EA = EC và EB = ED
b) Chứng minh rằng: C, E, B thẳng hàng
c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN
4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng
a) Tam giác DBC = tam giác DAM
b) AM//BC
c) M, A, N thẳng hàng
Cho góc vuông xOy, điểm A trên tia Ox, điểm B trên tia Oy. Lấy điểm E trên tia đối của tia Ox, điểm F trên tia Oy sao cho OE = OB, OF = OA.
a) Chứng minh AB = EF, AB \(\perp\) EF.
b) Gọi M, N lần lượt là trung điểm của AB và EF. Chứng minh rằng tam giác OMN vuông cân.
Cho tam giác ABC có AB = AC. M là trung điểm BC.
a) Chứng minh: tam giác MAB = tam giác MAC
b) Chừng minh AM là tia phân giác của góc BAC và AM vuông góc BC
c) Lấy điểm E trên AB, điểm F trên AC sao cho AE = AF. Gọi G là trung điểm EF. Chứng minh: 3 điểm A; G; M thẳng hàng.
d) Chứng minh: EF // BC
e) Trên tia EF lấy K sao cho EK = BC. Gọi I là giao điểm của BC và EK. Chứng minh: I vừa là trung điểm của EC vừa là trung điểm của BK