\(f\left(x\right)=4x^2-12x+10\)
=> \(f\left(x\right)=4\left(x^2-3x\right)+10\)
=> \(f\left(x\right)=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)-9+10\)
=> \(f\left(x\right)=4.\left(x-\frac{3}{2}\right)^2+1\)
Có: \(\left(x-\frac{3}{2}\right)^2\ge0\)với mọi x
=> \(4.\left(x-\frac{3}{2}\right)^2\ge0\)với mọi x
=> \(4.\left(x-\frac{3}{2}\right)^2+1\ge1\)với mọi x
=> \(f\left(x\right)\ge1\)với mọi x
Dấu "-" xảy ra <=> \(\left(x-\frac{3}{2}\right)^2=0\)
<=> \(x-\frac{3}{2}=0\)
<=> \(x=\frac{3}{2}\)
KL: GTNN của f(x) = 1 <=> \(x=\frac{3}{2}\)
4x2-12x+Vậy = [(2x)2-2.2x.3+32]+1
= (2x+3)2+1 >= 1
Vậy GTNN của f(x) bằng 1 khi và chỉ kho 2x+3=0 => x=-3/2
k đúng hộ mình ^^