Ta có f(x)=1+x^3+x^5+x^7+....+x^101 (1)
Thay x=1 vào (1) ta đc
f(1)=1+1^3+1^5+...+1^101
=1+1+1+...1+1
=51(có 51 số 1)
Vậy f(1)=51
Thay x=-1 vào (1) ta đc
f(-1)=1+(-1)^3+(-1)^5+(-1)^7+...+(-1)^101
=1+(-1)+(-1)+(-1)+...+(-1)
=1+(-50) ( có 50 số -1)
=-49
Vậy f(-1)=-49
f(1)=1+13+15+...+1101
f(1)=1+1+1+..+1(Có:(101-1)/2+1=51 số số hạng)
f(1)=1x51=51
f(-1)=1+(-13)+ (-15)+...+(-1101)
f(-1)=-1+-1+-1+..+-1(Có:(101-3)/2+1=50 số số hạng)
f(-1)=-1x51+1=-51+1=-50