Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3
Cho F(x) là một nguyên hàm của hàm số f ( x ) = e x 2 ( x 3 - 4 x ) . Hàm số F(x) có bao nhiêu điểm cực trị?
A. 2
B. 1
C. 3
D. 4
Cho F(x)= x 4 - 2 x 2 + 1 là một nguyên hàm của hàm số f ' ( x ) - 4 x . Hàm số y = f ( x ) có tất cả bao nhiêu điểm cực trị?
Cho F(x) là một nguyên hàm của hàm số f ( x ) = e x 2 ( x 3 - 4 x ) . Hàm số F ( x 2 + x ) có bao nhiêu điểm cực trị?
A. 6
B. 5
C. 3
D. 4
Cho hàm số y= f( x) có đạo hàm f ' ( x ) = ( x + 1 ) 4 ( x - 2 ) 5 ( x + 3 ) 3 Số điểm cực trị của hàm số f x là
A. 5
B. 3
C. 1
D. 2
Cho hàm số f(x) có đạo hàm f ' ( x ) = x 2 ( x - 1 ) 3 ( x - 2 ) 4 ( x - 3 ) 5 , ∀ x ∈ ℝ . Số điểm cực trị của hàm số đã cho là
A. 1
B. 4
C. 2
D. 3
Biết hàm số f(x) xác định trên R và có đạo hàm f’(x) = (x – 1)x2(x + 1)3(x + 2)4. Hỏi hàm số có bao nhiêu điểm cực trị?
A. 4.
B. 1
C. 2
D. 3
Cho hàm số y = f ( x ) có đạo hàm trên R là f ' ( x ) = ( 2 x + 1 ) ( x - 3 ) ( x + 5 ) 4 . Hỏi hàm số đã cho có tất cả bao nhiêu điểm cực trị
A. 2
B. 1
C. 4
D. 3
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = ( x 2 - 1 ) ( x + 2 ) 3 , ∀ x ∈ ℝ . Hàm số có bao nhiêu điểm cực trị?
A. 3
B. 2
C. 5
D. 1