bạn đặt \(\left(\frac{x}{a};\frac{y}{b};\frac{z}{c}\right)=\left(m;n;p\right)\)
thì ta có \(\hept{\begin{cases}m+n+p=1\\\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=0\end{cases}}\)
từ gt 2 , ta có \(\frac{mn+np+pn}{mpn}=0\Rightarrow mn+np+pm=0\)
từ giả thiết 1, ta có \(\left(m+n+p\right)^2=1\Rightarrow m^2+n^2+p^2+2\left(mn+np+pm\right)=1\)
=> \(m^2+n^2+p^2=1\) hay \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
vậy A=1