Cho \(\frac{a}{c}=\frac{c}{b}\),với a,b,c khác 0.CMR:\(\frac{b-a}{a}=\frac{b^2-a^2}{a^2+c^2}\)
1. Cho a,b,c,x,y,z khác 0 thỏa mãn:
\(\frac{7cy-5bz}{x}=\frac{2az-7cx}{y}=\frac{5bx-2ay}{z}\)
CMR: \(\frac{2a}{x}=\frac{5b}{y}=\frac{7c}{z}\)
2.Cho a,b,c,x,y,z khác 0 thỏa mãn: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
CMR: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{1}{a^2+b^2+c^2}\)
3.Cho a,b,c thỏa mãn \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\)
CMR: 4(a-b)(b-c)=(a-c)2
4. Cho a,b,c thỏa mãn:\(\frac{a}{x}=\frac{b}{x+1}=\frac{c}{x+2}\)
CMR: 4(a-b)(b-c)=(a-c)2
5. Cho a,b,c thỏa mãn:
\(\frac{a}{-2017}=\frac{b}{-2016}=\frac{c}{-2015}\)
CMR: 4(a-b)(b-c)=(a-c)2
6. Cho a,b,c khác 0 và \(\frac{b+c+a}{a}=\frac{a+b-c}{b}=\frac{c+a-b}{c}\)
Tính giá trị biểu thức A=\(\frac{\left(a-b\right)\left(c+b\right)\left(c-a\right)}{abc}\)
cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,c,b,d khác 0,c khác +-d. CMR \(\frac{a}{b}=\frac{c}{d}hoặc,\frac{a}{b}=\frac{d}{c}\)
\(cho\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)cmr\frac{a}{b}=\frac{a-c}{c-b}\) (a,b,c khác 0; c khác b)
cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{a}\)với a,b,c khác 0.CMR\(\frac{b^2-c^2}{a^2+c^2}\)=\(\frac{b-c}{c}\)
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)(với a,b,c khác 0, b khác c)
CMR:\(\frac{a}{b}=\frac{a-c}{c-b}\)
Giúp mk nhé mina
biết\(a^2+ab+\frac{b^2}{3}=25;c^2+ac+\frac{b^2}{3}=9;a^2+ac+c^2=16\) và a khác 0; c khác 0;a khác -c
CMR: \(\frac{2c}{a}=\frac{b+c}{a+c}\)
1.Biết : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a ,b ,c ,d khác 0
CMR: \(\frac{a}{b}=\frac{c}{d}ho\text{ặc}\frac{a}{b}=\frac{b}{c}\)
cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) VỚI a,b,c khác 0;b khác c
CMR \(\frac{a}{b}=\frac{a-c}{c-b}\)