\(\frac{a}{c}=\frac{c}{d}=\frac{b}{d}=\frac{a+c-b}{a+b-d}\)
\(=\left(\frac{a+c-b}{c+b-d}\right)^3=\frac{a^3+c^3-b^3}{c^3+b^3+d^3}=\frac{a}{d}\left(ĐPCM\right)\)
p/S : chưa chắc
Từ \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{b}{d}\right)^3=\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}\)(1)
mà \(\left(\frac{a}{c}\right)^3=\frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}=\frac{a.c.b}{c.b.d}=\frac{a}{d}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\left(đpcm\right)\)