\(\frac{a}{b}=\frac{c}{d}\)
\(\frac{\left(a+b\right)^{2019}}{\left(c+d\right)^{2019}}=\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}\)
Cho : \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh : \(\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}=\left(\frac{a-b}{c-d}\right)^{2019}\)
Tính Q = \((\frac{a+b}{c+d})^{2019}\)+\((\frac{b+c}{d+a})^{2019}+(\frac{c+d}{a+b})^{2019}+(\frac{d+a}{b+c})^{2019}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)và \(a+b+c\ne0\).CMR: \(\left(19a+5b+1890\right)^{2019}=1914^{2019}.a^{2018}.b\)
cho các số dương a, b, c, d sao cho a/b = c/d. CMR: (2a + 3b/2c + 3d)^2019 = 5a^2019 + 7b^2019/5c^2019+7d^2019)
Cho a.b.c thỏa mãn \(\frac{a}{2019}=\frac{b}{2019}=\frac{c}{2020}.\)CMR
\(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Cho a, b, c thỏa mãn \(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}\). Chứng minh \(4\left(a-b\right)\left(c-d\right)=\left(c-a\right)^2\)