cho\(\frac{a}{b}=\frac{c}{d}\)CMR\(\frac{a^4+b^4}{c^4+d^4}=\left(\frac{a-b}{c-d}\right)^4\)
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\)CMR
a) \(\frac{a^2+b^2}{a^2+d^2}\)= \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\left(\frac{a-b}{c-d}\right)^4\)= \(\frac{a^4+b^4}{c^4+d^4}\)
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\) CMR:
a) \(\frac{a^2+b^2}{a^2+d^2}\)= \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\left(\frac{a-b}{c-d}\right)^4\)= \(\frac{a^4+b^4}{c^4+d^4}\)
1/ Biết \(\frac{a}{b}=\frac{c}{d}\), chứng minh
a) \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\left(\frac{a-d}{c-b}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)
2/ Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\)
3/ Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh a=b=c
CMR nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)
Cho a,b,c,d là 4 số khác 0; biết \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng \(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)
CHO A/B=C/D CHỨNG MINH RẰNG
\(\frac{\left(a-c\right)^4}{\left(b-d\right)^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)
\(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)
\(\frac{a^{2016}+c^{2016}}{b^{2016}+d^{2016}}=\frac{\left(a-c\right)^{2016}}{\left(b-d\right)^{2016}}\)
AI LÀM ĐƯỢC CÂU NÀO CŨNG ĐC,GIÚP MÌNH VS GẤP LẮM,THANKS
Cho \(\frac{a}{b}\)=\(\frac{c}{d}\)
CM: A, \(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
B, \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)=\(\frac{a^4+b^4}{c^4+d^4}\)
Cho\(\frac{a}{b}\)=\(\frac{c}{d}\) chứng minh
1,\(\frac{a^2+c^2}{b^2+d^2}\)=\(\frac{a.c}{b.d}\)
2,\(\frac{a^2+c^2}{b^2+d^2}\)=\(\frac{a^2-c^2}{b^2-d^2}\)
\(3,\left(a+c\right).\left(b-d\right)=\left(a-c\right).\left(b+d\right)\)
\(4,\left(b+d\right).c=\left(c+c\right).d\)
\(5,\frac{4.a-12.b}{8.a+11.b}=\frac{4.c-12.d}{8.c+11.d}\)
\(6,\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
\(7,\frac{a^{10}+b^{10}}{\left(a+b\right)^{10}}=\frac{c^{10}+d^{10}}{\left(c+d\right)^{10}}\)