\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) a,b,c,d khác 0
CMR: \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=\frac{d}{c}\)
1 Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR: a, \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
cho \(\frac{a}{b}=\frac{c}{d}\)
CMR ta có tỉ lệ thức \(\frac{a^2+b^2}{c^2+d^2}=\frac{ad}{cd}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\), chứng minh rằng
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Cho \(\frac{a}{b}=\frac{c}{d}.CMR\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
Cho a/b =c/d. Chứng minh rằng : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}.Cmr:\frac{a}{b}=\frac{c}{d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)
cmr : \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR : \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)