\(\frac{a}{c}=\frac{b}{d}=>\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\)
\(=>\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(Ta\)\(có\)\(\frac{ab}{cd}=\frac{a}{c}.\frac{b}{d}=\frac{a}{c}.\frac{a}{c}=\frac{a^2}{c^2}\)
\(Suy\)\(ra\)\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)