a,đặt a/b=c/d=k=>a=bk;c=dk khi đó ta có
ab/cd=bkb/dkd=b2k/d2k=b2/d2
a2-b2/c2-d2=b2k2-b2/d2k2-d2=b2(k2-1)/d2(k2-1)=b2/d2
=>ab/cd=a2-b2/c2-d2
\(a)\) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có:
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(1\right)\)
Lại có:
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)
\(b)\) Đặt \(\frac{a}{b}=\frac{c}{k}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có:
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\left(1\right)\)
Lại có:
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)